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Droplet theory in low dimensions: Ising systems in zero 
field 

A D Bruce and D J Wallace 
University of Edinburgh, Department of Physics, Mayfield Road, Edinburgh E H 9  3JZ, 
Scotland, UK 

Received 16 November 1982 

Abstract. We develop a theory of the universal configurational physics underlying critical- 
point phenomena in the Ising universality class. The theory is formally justifiable in 
d = 1 + e  dimensions and may be regarded as the natural continuation of the kink-based 
theory of one dimension, which it incorporates as a limiting case. In d = 1 + e  the 
configurational building block is the droplet. The typical droplet is not spherical and the 
many-droplet assembly is not dilute: the implied problems are handled with renormalisa- 
tion group methods. It is found that droplet shape fluctuation effects control the correlation 
length exponent v, while the nesting of droplets within droplets controls the order 
parameter exponent p. The exponents w and p thus effectively define, respectively, the 
fractal dimensions of the droplet surface and the droplet volume. The theory is used to 
determine and illuminate the critical behaviour of further quantities including the free 
energy, the susceptibility, the droplet number distribution and the distribution of the 
intra-droplet order. 

1. Introduction 

It is now widely recognised that the long-wavelength behaviour of a system undergoing 
a continuous phase transition is remarkably insensitive to its specific microscopic 
characteristics. The recognition of this, the universality phenomenon, is at the heart 
of contemporary theories of the critical region, in which it is to varying degrees 
vindicated and exploited (Kadanoff 1971, Wilson and Kogut 1974, Fisher 1974). At 
a formal level the phenomenon is defined by the assertion that the correlation functions 
of (arbitrary numbers of) ordering coordinates, separated by distances large compared 
with all microscopic lengths, have universal forms (forms which are the same for all 
members of a universality class) modulo two non-universal scales (Bervillier 1976). 
At a more physical level the phenomenon may be expressed in the statement that 
the spectrum of coarse-grained configurations is universal, modulo ordering-coor- 
dinate and spatial coordinate scales (Bruce 198 la) .  

The notion that the universality of the critical region resides, ultimately, in the 
universality of the underlying coarse-grained configurations is both challenging and 
potentially fruitful. The challenge it poses lies in the task of characterising the universal 
patterns and in identifying such links as may exist between specific configuration 
features and the values of the more familiar universal observables, typified by critical 
exponents. The idea is a potentially fruitful one in as much as it illuminates the need 
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for critical-point approximation schemes to be tailored to respect as closely as possible 
the (anticipated) coarse-grained configuration spectrum. Moreover, it engenders the 
helpful expectation that the physics will be tractable when the patterns are simple. 

These general remarks represent an amalgam of the motivation for and lessons 
learned from the study reported in this paper, which amplifies an earlier brief communi- 
cation (Bruce and Wallace 1981). We develop a configuration-based theory of the 
phase transition exhibited by members of the Ising universality class in low space 
dimensions. By ‘Ising universality class’ we mean systems characterised by a scalar 
order parameter and short-range interactions. By ‘low’ space dimensions we mean, 
formally, dimensions d for which E = d - 1 may be regarded as a small parameter. 

If one regards the theory merely as a computational scheme the latter constraint 
is a severe one: in particular, it seems unlikely that the theory can be persuaded to 
yield numerically reliable predictions for critical exponents, even for d = 2. It seems 
probable, however, that some of the more general lessons and insights which emerge 
from the theory do transcend this limitation: it is thus at a conceptual rather than 
narrowly computational level that the value of the theory should be assessed. 

The utility of E = d - 1 as an expansion parameter is immediately plausible from 
a configurational standpoint. In one dimension the coarse-grained configurational 
physics is, universally, that prescribed by a gas of kinks (Krumhansl and Schrieffer 
1975, Zinn-Justin 1981, Bruce 1981b); the gas is dilute so that the spectrum of 
configurations, and the collective behaviour in which they are manifested, are easily 
determined. It transpires that the dominant role of the kink and the simplicity of the 
dilute kink gas have natural analogues in d = 1 + E dimensions. The analogue of the 
kink is the boundary of a droplet of one phase embedded in a background of the 
opposite phase. The analogue of the diluteness of the one-dimensional kink gas is the 
diluteness of droplet boundaries. As a result, an explicit analytically tractable droplet- 
based theory is realisable for d = 1 + E .  

The utility of a ‘droplet’ as an elementary configuration-building block in Ising 
systems has long been appreciated. The earliest references are cited by Fisher (1967); 
recent reviews have been given by Domb (1976) and Binder (1976). To date, the 
concept has proved most powerful in the context of sub-critical coexistence curve 
behaviour: droplet-based theories predict a (conceptually if not practically) significant 
essential singularity in thermodynamic potentials on the line of phase coexistence-the 
line T < T,, H = 0 in the language of magnetism (Andreev 1964, Fisher 1967, Langer 
1967, Gunther et a1 1980). This singularity is not readily captured in alternative 
theories, although extensive series expansion studies (Baker and Kim 1980, Enting 
and Baxter 1980) and Monte Carlo work (Jacucci et a1 1983) have been shown to be 
consistent with the predictions of the most recent and most detailed droplet-based 
theory of this phenomenon (Lowe and Wallace 1980). The source of the success of 
the simple droplet picture in this context is not hard to identify: the predicted singularity 
may be traced to the contributions, to thermodynamic potentials, made by droplets 
(of the phase opposite to that favoured by the vanishingly small field H) whose size 
is sufficiently large that the bulk (field-controlled) droplet energy competes with the 
surface energy. Now droplets which are large-in particular, large on the scale of the 
correlation length &are simple in two respects. Firstly, they are geometrically 
well-defined objects whose deviations from hyperspherical form are statistically negli- 
gible. This statement is vindicated in the course of the work described here. Secondly, 
large droplets clearly occur with low probability, thus rendering plausible the use of 
a dilute droplet gas approximation. This statement requires rather more elaborate 
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justification which emerges in the extension of the present work to the case of a finite 
ordering field. This extension will be described elsewhere; the present work is 
restricted to the coexistence curve. 

Within the critical region itself the droplet concept has proved rather less powerful. 
In this regime, prior to the present work, it has provided little more than an illuminating 
scaling phenomenology of critical-point behaviour (see e.g. Binder 1976). The reason 
is clear: the configurational physics near the critical point does not have the simplifying 
features identified above. Specifically, to the extent that it is at all describable within 
a droplet framework, the critical behaviour must reflect the contributions of a critically 
growing population of droplets of a whole range of sizes including (indeed, pre- 
dominantly) droplets whose sizes are small compared with 6. These observations 
identify two key problems. The need to incorporate the effects of small droplets raises 
the first problem: one may anticipate that small droplets are not generally hyper- 
spherical, Indeed, this recognition is implicit in the earliest droplet phenomenologies 
(Fisher 1967) which allow for the possibility that the (mean) surface area of droplets 
of a given volume scales with that volume in a non-trivial way. The second problem 
resides in the fact that the droplet gas will not, in any obvious sense, be ‘dilute’ near 
the critical point: excluded volume and droplet overlap effects are clearly inevitable. 
This recognition is embodied in a later variant of the phenomenological droplet 
picture (Kadanoff 1976a) which notes, in particular, the possibility of droplet ‘nesting’ 
(‘droplets within droplets.. .’I. 

The work presented here makes it clear that an adequate treatment of these two 
problems is an essential prerequisite of any droplet-based theory of the critical region: 
it transpires that (in d = 1 + E )  droplet shape fluctuations are instrumental in controlling 
the correlation length exponent Y while droplet nesting controls the order parameter 
exponent p. Each of these effects poses a problem of many length scales; each thus 
demands the use of renormalisation group (RG) methods. It turns out that (in low d )  
the two problems can be addressed separately, and they are most conveniently treated 
with rather different forms of renormalisation group. These remarks are reflected in 
the structure and flavour of this paper, which we now outline. 

Sections 2, 3 and 4 are devoted to the properties of a single isolated droplet. The 
problems associated with droplet shape fluctuation effects are treated with the aid of 
a renormalisation scheme based upon dimensional regularisation and legitimised by 
a small E approximation. This analysis may be viewed as an extension to the case of 
the ‘almost spherical interface’ of the theory of the ‘almost planar interface’ initiated 
by Wallace and Zia (1979). The analysis establishes the influence of shape fluctuations 
on the droplet geometry (surface area and volume) and population. The reader who 
wishes to skirt this, the most technical part of the present work, will find the key 
results summarised in § 4.1 where the single-droplet partition function (which, we 
shall ultimately see, determines the droplet population) is shown to have a universal 
scaling form controlled by a critical (correlation) length 6. 

In 8 8  5 ,  6 and 7 we develop a multi-droplet description of the configurational 
physics of Ising systems. The key problems-droplet nesting and excluded volume- 
are handled with the aid of elementary RG arguments, which are realised in the form 
of simple differential equations. Again the analysis is justifiable for small &-this time, 
by virtue of the diluteness of droplet boundaries (alluded to above) which turns out 
to be characteristic of low dimensions, even at the critical point. The results of the 
analysis include predictions for the order parameter (illuminating the configurational 
significance of p) ,  the free energy and susceptibility (predictably confirming strong 



1724 A D Bruce and D J Wallace 

scaling), the droplet number distributions (revealing an unexpected flaw in droplet 
phenomenologies) and the distribution of the magnetisation of a single droplet 
(illuminating the character of the universal configuration spectrum). 

Finally, in 0 8, we summarise the key points which emerge from our study, amongst 
which perhaps the most distinctive is the recognition that the two key exponents U 
and 0 may be regarded, respectively, as controlling (or being controlled by) the fractal 
dimensions of the droplet surface and droplet volume, in low space dimensions. 

2. The isolated droplet model 

2.1. Preliminaries 

Consider a fixed-length spin lattice Ising system. At zero temperature the system is 
occupied fully by one or other of the two ordered phases, to which we shall refer as 
‘black’ and ‘white’. Suppose that the boundary conditions are such that the favoured 
phase is white. Now suppose that the temperature is raised from zero. The equilibrium 
ensemble of configurations will then display clusters of black spins. Provided the 
temperature is low in comparison with T, it is clear that these black clusters or 
‘droplets’ will be effectively isolated from one another. This is the picture underlying 
the original phenomenological droplet theory (Fisher 1967). In this, the first part of 
the programme set out in § 1, we attempt to characterise, in a quantitatively predictive 
fashion, the configurational properties of such effectively isolated droplets. In the 
process we shall make three key assumptions which we now identify. 

Firstly we shall assume that the configurational properties we seek may be extracted 
from a study of the continuum limit of the fixed-length-spin king model, realised as 
an appropriate field theory. The justification for the assumption lies in the expectation 
that the configurational properties of large droplets will display universal features 
which are independent of (for example) detailed lattice structure. The motivation for 
the assumption is that the corresponding field theory is technically more amenable (if 
conceptually more problematic) than its lattice counterpart. 

Secondly, in formulating our model and identifying its properties we shall suppose 
that the statistically dominant droplets may be regarded as almost hyperspherical. 
This assumption proves correct (or, at least, self-consistent) ‘near’ dimension d = 1. 

Thirdly we shall suppose that it is meaningful to pursue the study of isolated 
droplet properties into the critical region. The justification for this (apparently 
implausible) supposition will emerge in the course of the second part of our programme 
(beginning in § 5 )  where we shall argue that the dilute droplet picture, manifestly 
correct for T << T,, actually remains appropriate (albeit in a subtly modified form) in 
the critical region, for low enough space dimension. 

2.2. Droplet geometry 

In the continuum limit of the lattice Ising model (or, equivalently, the deep well limit 
of the Landau-Ginzburg model) a ‘droplet’ is effectively a connected region of space 
with an intrinsically sharp closed boundary. In keeping with our preliminary remarks, 
we will characterise the shape of such a droplet through its deviation f(q) from a 
hyperspherical reference droplet of radius R as in figure 1: 
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Figure 1. A nearly spherical droplet. The field f ( r ) )  gives the deviation of the radial 
coordinate (in the direction r ) )  from the radius R of a reference spherical droplet. 

Here 77 specifies a direction from the centre of the reference droplet. The field f has 
a natural decomposition in the spherical harmonics Y I a ( ~ )  of d dimensions: 

We now note a number of droplet properties which we shall require later (Gunther 

The volume contained within the droplet is given by 
et a1 1980). 

where dR is the element of solid angle in d dimensions. 

n * q = cos 8 between the unit normal n and the unit radial vector q : 
To obtain the surface area of the droplet it suffices to know the direction cosine 

d = 1 dR (R + f ( ~ ) ) ~ - ' / c o s  8. (2.4) 

Suppose we have two neighbouring points P = R ( q ) q  and P + S P  on the surface, 
related to one another by an infinitesimal rotation w,, = -U,, in the i-j plane. Then 

SP = to,&,, (R (77 ) V I ,  

where L,, is the rotation generator in the i-j plane: 
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Squaring this equation and using the fact that n and q are unit vectors gives 

(n  .q12 = ~ ~ ( 7 7 ) [ ~ ~ ( 7 7 ) + ~ ( ~ i l ~ ( r 1 ) ) ~ 1 - ' .  (2.6) 

Substituting into (2.4) and using (2.1) we obtain the explicit expression 

for the surface area of the droplet. The same expression can also be obtained directly 
from the induced metric on the surface. 

Two droplets which are related by a rigid translation by vector x have of course 
the same value of 7" and d. The fields f and f' which describe the two droplets are 
obviously different; for infinitesimal x and arbitrary f they are related by? (Giinther 
eta1 1980) 

(2.8) P(T 1 = f ( ~ )  + X  ' V  + [R + f ( q ) I - ' x i ~ ~ i j f ( ~ )  + 0(x2 ) .  

The expressions (2.3) and (2.7) are invariant under this transformation. 
The properties of the spherical harmonics in d dimensions required for this paper 

can all be obtained from the fact that the symmetric traceless tensors of rank I form 
a basis for the functions r'Yl, for the given I .  The number of such tensors gives the 
degeneracy 

in terms of the Euler r function. The fact that the traceless tensors are eigenfunctions 
of the Laplacian operator 

d2 d - 1  d L2 V L 7 + - -  -+- 
dr r dr 21 

gives directly the eigenvalues of L2 = Li,Lii: 

L2  = -21(1 +d  -2) ,  I=O, 1 , 2 , *  , . .  (2.10) 

Two further remarks are appropriate here. Firstly we draw attention to the implicit 
assumption we have made that (statistically important) droplets can be described by 
(2.1) with a single-valued function f The coherence of our subsequent perturbative 
calculations shows that this assumption is at least internally consistent (cf however, 
further remarks in § 8). Secondly, on a matter of terminology, we note that, although 
one cannot meaningfully speak of a droplet radius, one can (at least within our 
framework) associate with any droplet a unique length R which we shall term the 
droplet 'scale size'. It may be thought of as the radius of the underlying hyperspherical 
reference droplet (figure 1) from which the given droplet may be generated by assigning 
appropriate values to the amplitudes a',, (equation (2.2)), which prescribe the field f, 
with the constraint ao,o = 0. 

+ Equation (2.8) corrects a sign error in Giinther et a1 (1980). 
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2.3. The single-droplet partition function 

With the aid of (2.3) and (2.7) we may immediately formulate a model for the 
dimensionless configurational energy X of a single droplet relative to the zero-droplet 
ground state: 

The first term represents the droplet surface energy: the parameter Ti’ gives a 
measure of the surface tension. The second term represents the droplet volume 
energy: the (‘magnetic’) field H gives a measure of the distance from the coexistence 
curve. In the calculations reported here we set H = 0. 

The configurational properties of the single-droplet ensemble are presecribed by 
the single-droplet partition function which we write as the functional integral 

(2.12a, 6 )  

The choice of measure implied by (2.126) is important. In the course of our subsequent 
study of the many-droplet assembly we shall ascribe significance not only to the form 
of Z1 but also to its overall scale. Specifically, we shall require that the normalisation 
of Z1 is consistent with a zero-droplet (ground state) partition function that is precisely 
unity. We believe that the prescription (2.126) fulfils this requirement within the 
framework of dimensional regularisation which we shall use (cf § §  3.2, 3.3). The 
arguments by which we have been able to substantiate this belief are less complete 
than we would wish. They are set out in appendix 1. 

3. Evaluation of the single-droplet partition function 

In this section we set up perturbation theory for the single-droplet partition function 
defined by (2.11) and (2.12). The expansion parameter To has dimension 
analytical control of the calculation is restricted to d = 1 + E  dimensions. The necessary 
collective coordinate transformations are described in § 3.1, the perturbative calcula- 
tion is given in § 3.2 and the renormalisation essential to the description of small 
droplets is performed in § 3.3. 

3.1. Collective coordinate transformations 

Conventional perturbation theory involves finding an extremum of %’ and expanding 
the field about its value at the extremum; anharmonic terms give systematic corrections 
to the Gaussian approximation. This approach cannot be followed directly in our 
case because there is no extrema1 droplet of non-zero radius; it is necessary to treat 
the scale size R of the droplet as a constrained collective coordinate. Further, since 
a rigid translation of the droplet does not change its energy, a factor proportional to 
the volume of space in which the droplet can be found must be extracted from the 
functional integral J of. 
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These aspects are reflected in the form of the expansion of the Hamiltonian (2.11) 
in a power series in f for a given fixed reference radius R : 

%”() = Ti’ j dR (R +f)‘[l + t (R + f ) - 2 ( L i , f ) 2 ] 1 / 2  

= (R‘/To) I dR(1  + E R - ’ ~ + ~ R - ~ ~ [ - ; L ~ + E ( E  - l)lf+O(f3)}. 

(3.1) 

Here we have written E = d - 1 and have integrated by parts on Li,. The first term in 
(3.1 j gives the surface area of a sphere in d dimensions: 

a0 = R ‘ S d  = 2rdI2R ‘ / I ’ (d /2) .  (3.2) 

There is a term linear in f in (3.1) because f = 0 is not an extremum: d R f  picks out 
only the I = 0 component off in the decomposition (2.2). Using the eigenvalues (2.10) 
of L 2  we see that the quadratic term has a coefficient proportional to 

- ;L2+F(s -1 j= I ( I+s  - 1 j + s ( s - l )  (3.3) 

for a given 1. For I = 0, (3.3) is O ( s )  and for I = 1, it is O(E’); for I 3 2  all eigenvalues 
are positive and 0(1) or larger. Thus the modes with 1 3 2  can be handled by 
perturbation theory but the 1 = 0 and I = 1 modes cannot, because they would give 
factors of O ( E - ~ )  and O(E-’) in internal propagators which would invalidate a small-s 
perturbation expansion. 

To eliminate the I = 0 mode we note that the integration on aoo may be replaced 
by an integration over the droplet scale-size R. Specifically, since Yo0 = ( S d ) - ’ / ’  by 
normalisation, the 1 = 0 component of R +f(q) is R +aoo(Sd)-’’2. Thus we may make 
the replacement 

daoo = ( S d ) ’ ”  dR (3.4) 

so that 

(3.5) 

The I = 1 mode, which is d-fold degenerate, may be replaced by an integral over 
all possible coordinates xi ( i  = 1 , .  . . , d )  of the centre of the droplet. To see this, 
suppose we have a specific droplet configuration f(q). Under a rigid translation by 
vector x, f(q)-,f,(q); the infinitesimal form of the transformation is given in (2.8). 
The quantity If,.(q)vi dR, where v i  are the components of the unit radial vector, 
represents the position of the ‘centre of mass’ of the surface of the translated droplet. 
Consider the following identity for a given field configuration f: 

The &function gives a contribution in Jddx only when the centre of the translated 
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droplet is at the origin; the Jacobian factor from the S function is to be evaluated at 
this value of x. We now substitute this identity into the integrand in (3.5) and exchange 
the orders of integration over x and f ( q ) .  In the integral over f, we make the change 
of variable f ( q ) + f - x ( q ) .  The Hamiltonian Z(f) (cf § 2.3) and the measure (cf 
appendix 1) are invariant under this transformation. The remaining factors from (3.6) 
simplify since f x ( q ) +  f x - x ( q )  =f(q) and we obtain 

(3.7) 

The change of order of integration means that the S function now constrains the 
function f ( q ) :  it sets the 1 = 1 component to zero. A normalised basis for the 1 = 1 
spherical harmonics is (d/Sd)1’2ql ( i  = 1, . . . , d ) .  Hence 

We must also evaluate the final Jacobian factor in (3.7). Since the derivative of f x ( q )  
is to be evaluated at x = 0, we need only the infinitesimal form (2.8) of the translated 
f ( q ) ;  the required factor then follows as 

Substituting (3.8) and (3.9) into (3.7) yields 

This expression is the starting point for a standard perturbation treatment. The 
prime on the measure means that the 1 = 0 and 1 = 1 components are excluded from 
f .  The integral ddx is just the volume V available to the droplet; it has replaced the 
integral over the 1 = 1 components off.  

3.2. Perturbative calculation 

We now consider the perturbative evaluation of the integral over the modes with 
1 2 2 .  In the expansion (3.1) for Z ( f ) ,  the first term is given in (3.2), the second term 
(linear in f) is zero because the 1 = 0 mode is now excluded from f ,  and the third term 
gives a Gaussian integral. Higher-order terms in f give contributions of O(To) to 
Z1 and are neglected in the one-loop calculation which we give here. The Jacobian 
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factor must also be expanded: 

= exp Tr In S i k  +- ( R  +f)-'qiqj(Lkjf) dn)]  [ ( sd,l 

= exp[o(f*)I (3.11) 

since Lij = -Lji. This O ( f 2 )  term differs from the quadratic term in % ( f )  because the 
latter carries a factor l/To. If we evaluate the contribution to Z1 of (3.11) in 
perturbation theory using the free propagator from X ( f ) ,  then we see that (3.11) is 
unity to within correction terms O( To); the Jacobian factor is required only at two-loop 
and higher order. 

Hence, in perturbation theory, expression (3.10) becomes 

z1 = (Sd)(d+1) /Zd-d/2  J ddx J dR exp(-SdRE/To) 

(3.12) 

The contribution of the Gaussian integral is given by the sum over 1 3 2. The degeneracy 
factor v l ( d )  is given in (2.9) and we have made the substitution (3.3) in the Gaussian 
integral. 

The remainder of this section is concerned with the evaluation of the sum in (3.12). 
The first question is the convergence of the sum. From (2.9) the asymptotic form of 
v l ( d )  for large I is 

v d d )  - (2 / r (d  - i ) ) iE- l .  

Hence we see that the sum in (3.12) diverges for any E > O ,  i.e. for all dimensions 
d > 1. This is a direct consequence of the continuum limit implicit in the form of the 
Hamiltonian (2.11). To make the sum meaningful we must regularise the theory in 
some way. The most physically acceptable way of doing so is to restore the cut-off 
effects afforded by the underlying lattice. This procedure is hard to implement in this 
case: it cannot be done simply by imposing a cut-off on the sum over I as this would 
break the symmetry under rigid translations. One possible alternative is to work 
within the droplet framework which emerges from the Landau-Ginzburg model with 
finite well depth, reflected in a finite mass parameter p.  The droplet interface is then 
smeared over distances O(w -I), producing an effectively translation-invariant cut-off 
on 1 of O ( p R )  where R is the droplet scale size. We do not pursue this approach 
here but note that the regularising effect of p is evident in the calculations reported 
in appendix 1. 

We shall define the sum in (3.12) by dimensional regularisation, which means that 
we must envisage continuing the sum from negative values of E ,  for which it is 
convergent. Dimensional regularisation has been successfully applied to a number of 
similar problems involving spherical harmonic functions in d dimensions (McKane 
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and Wallace 1978, Drummond and Shore 1979, McKane 1979). Here we shall see 
that the sum in (3.12) has a Laurent expansion with a simple pole at E =O. The 
perturbative corrections omitted from (3.12) turn out to be at most O ( E )  (after 
renormalisation: cf § 3.3) which is, therefore, the order to which we now evaluate the 
sum. 

We begin by noting from (2.9) that 

IC r ( l + d )  
2 v f ( d ) =  !'E z 2  ( T ( d ) T ( l +  l ) - r ( d ) r ( l -  1) 

= -1 - d ,  (3.13) 

the sum converging for d < 1. Hence one sum in the Jacobian factor is given by 

21 

exp( f 1 v,(d) ln(ToR 2--E 27r) = (27rToR2-' ) - ( 2 + E ) ' 2 .  
1=2 

The remaining sum is 

(3.14) 

(3.15) 

using (2.9) for v r ( d )  and simplifying for E small. In order to evaluate this sum we 
need the expansion 

r ( i + & ) / r ( i )  = iE[i-.c(ti-1+o(i-2))+~(~2/1)]. 

Then 

Similarly 

Now the Riemann zeta-function is defined by 

n = l  

and hence 

(3.16) 

(3.17) 

Further, ((2) has a simple pole at z = 1 (Gradshteyn and Ryzhik 1965, § 9.536): 

C ( z )  = (2  - l ) - l + O ( l )  
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and hence 

(3.18) 

Collecting together the results (3 .15H3.18)  gives the remaining sum to the required 
accuracy. The corresponding factor in Z1 is given by 

exp(- 4 1,) = exp(-2/T(d)~ ) [ 1 +  O ( E  13. 
Substituting expressions (3.14) and (3.19) into (3.12) gives 

(3.19) 

x exp[- (SdR'T;' + 2 / ~  T ( d ) ) l [ l +  O(T0, E 11 (3.20) 

for the single-droplet partition function. By evaluating the Gaussian integral only up 
to terms of order 1 we neglect corrections of order e ; corrections of order To arise 
at next order in perturbation theory. 

3.3. Renormalisation 

The argument of the exponential in (3.20) exposes the limitations of the bare perturba- 
tion theory calculation. The classical contribution SdR ' T i 1  is corrected by a factor 
[ 1 +  2T0R- ' / (& T(d)Sd)]  from the Gaussian integral (the one-loop contribution). The 
correction factor exhibits two features which are generic to the perturbation expansion 
in the coupling To, which has dimension (length)'. First, the effective dimensionless 
expansion parameter is TOR -'. Second, ultraviolet divergences from large 1 in sums 
over I and a in Feynman graphs contribute up to a factor e - 1  for each order in 
perturbation theory. The result (3.20) is therefore inadequate for our purposes on 
two grounds; the effective expansion parameter for E > O  is unboundedly large for 
small droplets ( R  + 0) and the factors E -' from each loop in perturbation theory have 
to be eliminated. 

The situation is similar to that which arises in describing critical behaviour in 
( 4  - E )  dimensions in the Landau-Ginzburg model. The dimensionless bare anhar- 
monic coupling is g(5)"', which becomes unboundedly large as the correlation length 
5 diverges (for d <4); if one relies on dimensional regularisation without an explicit 
cut-off, there are also factors of (4-d) - '  for each loop integral. Renormalisation 
theory (Amit 1978) resolves both of these problems by introducing a dimensionless 
renormalised coupling which absorbs the (4-d) - '  factors and which, as the length 
scale 6 diverges, increases to a limiting value of order ( 4  - d ) ,  the RG fixed point. 

We are going to follow the same procedure to extend the validity of the perturbation 
expansion (3.20). We shall introduce a dimensionless renormalised temperature 
parameter T ( R )  which eliminates the e-' factors and which, as the scale size R of 
the droplet decreases to zero, increases to a limiting value which is a RG fixed point, 
The difference between the procedure here and that encountered in 4 - e  dimensions 
is that here we are controlling the effect of small-scale fluctuations (R + O )  and will 
need an ultraviolet stable fixed point to do so; in the Landau-Ginzburg approach we 
are controlling large-scale fluctuation (5 + 03) and need an infrared stable fixed point. 
The ultraviolet stable fixed point required for T emerges naturally in 1 + E  dimensions 
( e  > O ) :  it turns out to be the critical temperature at which the droplet density is 
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sufficient to destroy the long-range order. The different stability properties for T and 
the Landau-Ginzburg coupling g are essential because T is a relevant variable and 
g is irrelevant. The calculations themselves follow the renormalisation discussed for 
the planar interface (Wallace and Zia 1979, Forster and Gabriunas 1981, David 1981) 
and are in the same spirit as the E expansions in 2 i e  dimensions for Heisenberg 
models (see e.g. BrCzin and Zinn-Justin 1976a, b, Brezin e? ul 1976a, b and references 
therein). 

Because the integrand in (3.20) is exponentially small in To, care is required at 
several points in the renormalisation. In the context of dimensional regularisation 
the bare coupling has an expansion in the renormalised coupling which is usually 
written in the form (Amit 1978) 

(3.21) 

where CL is some arbitrary momentum scale and A contains a pole term in E - ~  in 
order to remove the E - ~  terms which appear in perturbation theory. If A and 
higher-order coefficients contain only negative powers of E ,  then we have a minimal 
subtraction scheme. Equation (3.2 1) then defines uniquely a renormalised coupling 
at momentum scale ,U, for which standard RG equations follow. With regard to 
expression (3.20), it is more natural to define a renormalised coupling at length scale 
R.  A minimal subtraction renormalisation is 

(3.22) 

T ~ ~ F  = T ( @ )   AT^(^) + o ( T ~ )  

TOR -' = TMs(R) + E  -lTLs (R)  + O ( T 3 ) .  

Substituting into (3.20) we obtain 

(3.23) 

The renormalisation has clearly eliminated the problem of the k- '  factor since the 
argument of the exponential is finite as e + 0. 

The remaining problem in (3.23) is to study the R dependence of TMS(R) for 
small R. This is given by the RG equation obtained from (3.22) by differentiation 
holding To fixed: 

(3.24) R(dTMs/dR) s p  ( T M s )  = -ETMS + T&s + O(TLs) .  
This RG equation has two fixed points: 

(a) T = 0: infrared stable, TMs(R)  -j 0 as R + C O ;  

(b) T, = E + O(e2):  ultraviolet stable, TMs(R) + T, as R -+ 0. 
The existence of this second fixed point allows us to achieve our second aim; as R + 0, 
the new expansion parameter TMs(R) increases, but only to a finite value of O ( E ) .  
This behaviour is to be contrasted with the bare expansion in TOR-', which is useless 
for R + 0. 

The explicit dependence of the expansion parameter TMs upon the scale size R 
is obtained by integrating (3.24). If we neglect O ( T 3 )  from two-loop diagrams, the 
result may be written in the form 

TMS(R)[l- TMS(R)/F]-'R' =constant = c o l E  ( 3 . 2 5 ~ )  

where CO is a dimensionless constant and 5 an R-independent constant with the 
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dimensions of length. This length scale 6 plays in every way the role of the correlation 
length. 

In the first instance we see that for scale sizes R small compared with 6, TMs(R) 
approaches the ultraviolet stable fixed point value T, = E + O(E *): this result expresses 
the fact that criticality is evident on any length scale small compared with the correlation 
length. 

Secondly we observe that, for R >>[, equation (3.25a) implies that T M S ( R ) -  
co(R/[)-‘ ; accordingly the surface energy for droplets of such scale sizes is ci1Sd(R/6)E, 
the classical result for a droplet of radius R and surface tension cr = Ti’ = ~i’,$-(~-’) .  
The latter observation bears out the expectations of scaling theory (Fisk and Widom 
1969). 

Thirdly, noting that ,$ is (by construction) an R-independent length, we see that 
we may replace R in (3.25) by some fixed length scale Lo  (to be thought of as a 
minimum droplet size, or ‘effective’ lattice spacing). Identifying TMs(Lo) as the true 
system temperature and the regime TMS(Lo) = T, as the critical region, we then find 
for [ the expected power law behaviour 

6 ~ ~ O ( ~ c / c O ) ” ‘ [ ~  - TMS(LO)/Tcl-” (3.25b) 

where 

v = l /&.  ( 3 . 2 5 ~ )  

Finally we remark that our identification of 6 as a measure of the bulk correlation 
length is also borne out by a study of the d = 1 limit of our theory (appendix 2) which 
yields a correlation length with the same temperature dependence as that prescribed 
by kink-based theories of one-dimensional Landau-Ginzburg models. 

Implicit in the foregoing observations are three potentially disconcerting discoveries 
which merit further comment. The parameter To introduced in the Hamiltonian (2.11) 
is not a measure of the system temperature; an effective lattice spacing, Lo, must be 
introduced by fiat; it is TMs(L0) which plays the role of the system temperature. 
These peculiarities are interrelated corollaries of the fact that, within our chosen 
framework of dimensional regularisation, the Hamiltonian (2.11) has no explicit 
short-distance cut-off. Analogous circumstances are encountered in the dimensionally 
regularised treatment of the Landau-Ginzburg model near dimension d = 4 (see e.g. 
BrCzin et a1 1973). 

Now it would appear that, by solving ( 3 . 2 5 ~ )  for T M s ( R )  and substituting into 
(3.231, we obtain the required expression for 21. However, this procedure is incorrect: 
the overall amplitude is obtained correctly only if the R dependence of T M S ( R )  is 
given to two loops, and not just one as in ( 3 . 2 5 ~ ) .  In particular, as R + 0 

exP[-Sd/ TMSW 11 exP(-&/ Tc). 

Since T, = E + O(E’),  we need the O(E’)  term in T, to give the amplitude correct to 
O(1). This remark is a potential source of concern because although T, is universal 
to order E ,  it is not a universal quantity to O(E*) ,  since it depends on the precise 
definition of the renormalised T. We complete this section by giving the systematic 
two-loop renormalisation in such a way as to make explicit the universal character of 
2’. In so doing we shall invoke the known two-loop form of the p function for the 
almost planar interface (Wallace and Zia 1979) 

( 3 . 2 6 ~ )  p ( T I  = -&T + AT’ + %BT3 + o ( T ~ )  
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with 

A = 1 + O ( E ) ,  B = l+O(E) .  (3.266) 

This form clearly coincides with that prescribed in (3.24), to the one-loop order of 
approximation inherent in the latter. In fact, if the nearly-spherical-interface theory 
is to capture correctly the (presumably universal) two-loop corrections to the exponent 
v (cf ( 3 . 2 8 ~ )  below), the corresponding p function for the droplet problem must 
coincide with equations (3.26) at two loops also. 

Proceeding on this basis, we observe first that the correlation length may be 
introduced systematically as the R-independent length scale. Thus, writing 5 = 
Rg(T(R))  and requiring that dE/dR =0 ,  one finds that the correlation length is 
prescribed up to an overall amplitude: 

T(R) 

5 = R exp( - J dT' /p(T')) .  (3.27) 

Substituting (3.26) into (3.27) and integrating, we obtain the two-loop generalisations 
of (3.25u, 6, c ) :  

( 3 . 2 8 ~ )  

(3.286) 

( 3 . 2 8 ~ )  

We note that the non-universal O ( E )  correction to A cancels to give a universal form 
for U. 

We are now in a position to eliminate To in favour of a renormalised T in a 
manifestly universal way at this order in perturbation theory. The form of the p 
function ( 3 . 2 6 ~ )  prescribes, for To, an expansion in powers of T ( R )  of the form 

-1  = p ' ( ~ , )  = E  + t E 2 + ~ ( E 3 ) .  

TOR - - E  = T ( R  ) [ 1 + ( E  V /  T,) T (R )] + 0 ( T 3 ) .  (3.29a) 

Hence 

R '/To = 1 / T(R ) - E U/ Tc + O( T (R )). (3.296) 

Substituting this expression into (3.20), we obtain 

(3.30) 

In conjunction with expressions ( 3 . 2 8 ~ )  for T ( R )  and ( 3 . 2 8 ~ )  for U this is the key 
result of this section. Since T, = E + O ( E ~ ) ,  the 1 / ~  pole in the exponential is of course 
cancelled by the renormalisation as before. Although T,  appears in (3.30) and in 
(3.28u), its numerical value is required only at order E .  For example, as R + O ,  the 
term in the exponential in (3.30) becomes 

(3.31) 

which is manifestly universal. 



1736 A D Bruce and D J Wallace 

4. Single-droplet properties 

In this section we establish a number of properties of isolated droplets which follow 
from the key results of S; 3,  are of interest in their own right, and will prove useful in 
the development of the theory of many-droplet configurations initiated in 8 5 .  We 
shall begin by showing that the single-droplet partition function (3.30) may be 
expressed in a universal scaling form which, we shall ultimately see, is instrumental 
in controlling the mean population of droplets of a given scale size. We shall then 
examine the manner in which surface fluctuations modify the volume and surface area 
of a droplet. Finally we shall establish the behaviour of the radial variance of droplets 
of a given scale size, giving an explicit statistical measure of the extent to which the 
droplet shapes deviate from spherical. 

4.1. Scaling form of the single-droplet partition function 

The single-droplet partition function (3.30) may be cast in a particularly useful form: 

We have used the fact that, in (3.30), the integral with respect to x extends over all 
possible positions of the centre of the reference droplet; the integrand is independent 
of x and so the integral gives the volume V of the available embedding space. We 
have also introduced the volume uO(R) of a hypersphere of radius R, 

uo(R) = d-'SdRd (4.2) 
which, we shall see below (cf (4.7)),  is effectively the mean volume of droplets of scale 
size R. The function *(R,  5) is defined by 

*(R, 5) = 2 ~ - ' R - ' ( T ( R ) ) - ' 2 + F ' / 2  

where the prefactor has been simplified by the neglect of corrections of order E .  Since 
T ( R )  is a function of R/5 only (cf (3.28a)),  equation (4.3) has the scaling form 

GiR, 5) = R-'$V?/O. ( 4 . 4 ~ )  
The limiting behaviour of the function 6 will prove to be important. For large values 
of its argument z the function 6 ( z )  approaches zero exponentially fast: 

exp( -Sdz " / C O ) .  (4.4b) im) E ( 2 + € ) / 2  &z)=* z 

For small values of t the function has a power series expansion of the form 

(4.4c) 

where, in particular, 

with C = 0.577 . . . the Euler constant. 
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The physical significance of the function JI, and the parameter JIO in particular, 
will become clear in the course of § 5 .  

4.2. Mean volume of a single droplet 

The mean volume of a droplet of scale size R may be determined by evaluating the 
average of the volume operator (2.3) in the ensemble prescribed by the single-droplet 
partition function (2.12). Expanding (2.3) in powers of the field f we find 

u ( R )  = ( V ) R  = d-' d o  R d ( l  + d R - ' f ( q )  + ; e d R - * f 2 ( q )  +0( f 3 ) ) R .  (4.5) 

We now make the decomposition into spherical harmonics prescribed by (2.2). The 
Jacobian factor associated with the transformation again does not enter at the order 
of calculation considered here. The contribution of the 1 = 1 modes may be dropped 
since the volume is invariant under the rigid translations (2.8). The contribution of 
the 1 = 0 mode is also suppressed by the constraint that the average in (4.5) be taken 
for a prescribed R. Noting that I d a  f ( q )  then vanishes identically, and utilising the 
free propagator of the expansion (3.11, we then find from (4.5) 

I 

We note that the sum in (4.6) converges: by dimensional analysis, the volume operator 
-v^ requires no renormalisation beyond the replacement of TOR-' by T ( R )  (given in 
(3.28)) to eliminate subdivergences. The sum can be performed exactly in the limit 
E + 0: using expression (2.9) for v l ( d )  one cbtains 

Substituting into (4.61, replacing TOR-' by T ( R )  at this order in perturbation theory, 
and using s d  = 2 + O ( e ) ,  one obtains 

U(R) =d- 'SdR  '[I i- (4.71 

Since, below the critical temperature, T ( R )  is bounded above by T,  = O ( E ) ,  equation 
(4.7) shows that the corrections to the hyperspherical volume, (4.2), due to droplet 
shape fluctuations are at least of order e 2 .  (In fact, we expect that the O ( T 2 ( R ) )  terms 
also contain a multiplicative factor O ( E ) . )  Within the context of the present work the 
difference between c ( R )  and v o ( R )  can thus be safely neglected. 

' T ( R  ) ( I  + O(E 1) + O ( T ' ( R ) ) ]  = V o ( R  )[I + 0 ( T 2 ( R ) ) ] .  

4.3. Mean surface area o f  a single droplet 

The behaviour of the surface area has been considered in the context of the almost 
planar interface by David (1981), who shows that the necessary renormalisation of 
the surface operator implies that a surface of scale size L >>( indeed scales as Ld-' ,  
whereas a surface of scale size L << 5 scales as L"" and thus has a fractal character 
(a point to which we shall return in Q 8). The same surface properties hold for a 
droplet of scale size R. The perturbative calculation of the mean of the surface area 
operator d in (2.7) can be done directly, as we did in D 4.2 for the volume operator 
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V, or from the one-droplet partition function Z1, noting that 

(d) = T i  a In Zl/aTo. 

The expression (3.20) for 21 gives 

(4.8) 

(4.9) 

where again we consider the scale size R of the droplet as fixed. 
The result (4.9) in bare perturbation theory contains an apparent paradox; the 

correction term O( TOR-') has a negative coefficient suggesting the nonsensical result 
that fluctuations decrease the surface area. In order to make sense of (4.9) one must 
look carefully at the renormalisation. In contrast to the volume operator V,  
dimensional analysis implies that the surface area operator d does require a multiplica- 
tive renormalisation. Specifically, since To has a singular expansion in T ( R )  and In 21 
has a finite expansion (no E - ' )  in T ( R ) ,  then ( ~ d ) ~  in (4.8) necessarily has an expansion 
involving E -' poles which require renormalisation. We must thus find a dimensionless 
renormalisation factor for the bare area which removes these poles in E ,  leaving 
a finite result. Introducing again the cut-off length scale Lo at which the renormalised 
coupling has the value T = T(Lo)  and noting that 

LET2(a In ZJaT)  3 LET2(aTo/aT)a In Z,/aTo 

is an area which is automatically finite, we can define the renormalised mean area 
a (R ,  Lo, T )  by 

(4.10) 

The bare area (&)R depends only on TO and R. Differentiating with respect to Lo  at 
fixed To and R, and using the chain rule as usual, we obtain the RG equation for the 
renormalised surface area: 

[Lo(a/aL,)+P(T)a/aT+r,(T)la(R,Lo, T )  = O  (4.11) 

u(R,  Lo, T )  = (L;T2TG2 aTo/aT)(d)R. 

where 

ya ( T )  = -E  - 2 P ( T ) / T  + d p  (T)/d,T. (4.12) 

As usual, y , (T )  comes from the renormalising scale factor in (4.10). This equation 
for a droplet surface of scale size R is equivalent to the equation for the planar 
interface derived by David (1981) (with changes in sign conventions in y ( T )  and p ( T ) ) .  

The analysis of (4.11) follows standard RG methods. The values of (4.12) at the 
fixed points play an important role in determining the scaling behaviour with R : using 
the expressions in (3.26) and (3.28) we find 

Ya (0 )  = 0, y a ( T c )  = - E  + l / v .  (4.13) 

Equation (4.11) is integrated in the usual way: 

(4.14) 

In order to evaluate a (R, Lo, T) in perturbation theory, the appearance of TOR-' in 
(4.9) makes it clear that we should choose the free length scale L equal to R, so that 
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the RHS of (4.14) can be evaluated perturbatively. Using the expansion 

T,J.O'= T [ ~ + ( E V / T , ) T + O ( T ~ ) ]  

from (3.29), one finds 

u 0 / a ~  = (1 + & V T / T , ) - ~ ( I  + 2 E v ~ / ~ c )  + 0(r2) 
= 1 + 0 ( T 2 ) .  (4.15) 

Combining (4.9), (4.10) and (4.15), we obtain from (4.14) 

This is the key result for the surface area. Some remarks are in order. The 
renormalising factor in (4.10) in fact is required perturbatively only at O(Tz) according 
to (4.15). Correspondingly the bare perturbative calculation (4.9) does not appear to 
acquire renormalisation at order T ;  it certainly is required at O ( T 2 )  to create the 
anomalous dimension yn(Tc) = O(e2) .  If R >>[, there is asymptotically no R depen- 
dence in the exponential prefactor in (4.16) since ya(T(L'))-L'-'  for L'>>[. Thus 
the surface area of droplets of scale size R >>[ scales as the conventional area Re .  
For L'<< [, however, y.(T(L')) = ya(Tc) = --E + l / v ,  implying, for R << [, the scaling 
behaviour 

a(R,Lo, T )  =SdR'(R/Lo)''"-'[l +O(T(R))] .  (4.17) 

Thus droplets of scale sizes less than the correlation length have a surface area with 
an anomalous dimension. Clearly we cannot extrapolate Lo to zero, since the surface 
area of any finite droplet would then be infinite; this just reflects the fact that the 
surface operator requires renormalisation. 

Finally, we note that the negative coefficient of the O(T(R) )  correction in (4.9) 
can now be seen to be entirely meaningful. As R decreases T ( R )  increases and the 
negative coefficient implies that the surface area decreases more rapidly than just by 
the scale factor R E .  However, in decreasing R to R -AR, say, we are losing surface 
fluctuations of wavelength between R - hR and R and hence must expect the surface 
area to decrease by more than ( R  -AR)'/R'. 

4.4. Radial variance for a single droplet 

The extent to which the typical droplet of scale size R deviates from spherical is 
characterised by the radial variance ( f 2 > R ,  which may be regarded as a measure of 
the droplet ramification in the terminology of Domb (1976). This quantity has already 
been calculated in the course of 0 4.2. The calculation to obtain (4.7) from (4.6) yields 

= iR  '[ T ( R ) &  (1 + O ( E ) )  + O( T2(R ))I. (4.18) 

As in all previous calculations, the crossover of T ( R )  occurring between the ranges 
R >>[ and R << [ controls the behaviour of ( f 2 > R .  For R >>[, with T ( R )  =co([/R)',  
we see 

( f 2 ) R  ~ C O & R ~ - ~ [ ~ .  ( 4 . 1 9 ~ )  
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This is the standard dependence due to the classical wandering of the interface. For 
R << 5, T ( R )  = T, and 

(f’)R =&’R2 .  (4.19b) 

Hence we see again the scale invariance of droplets small compared with the correlation 
length; the fractional variance ( ~ ’ ) R / R  * is independent of R. 

5. Multi-droplet configurations 

Thus far we have focused on the characteristics of isolated droplets. We have seen 
that certain critical-point properties of the bulk Ising system (specifically, the existence 
of a critically diverging correlation length, and the associated exponent Y )  are reflected 
in the form of the spectrum of single-droplet configurations. In this section we initiate 
the second part of our programme which is concerned with multi-droplet configur- 
ations. We shall develop a theory of the partition function of a many-droplet assembly. 
In the process we shall identify a procedure by which one can generate a multi-droplet 
representation of the canonical ensemble of configurations in an Ising system. We 
shall then utilise this ensemble to determine further critical observables (in particular, 
the order parameter and its exponent p )  whose behaviour we shall again trace to 
specific features of the underlying configurations. In the course of our arguments we 
shall provide the justification for the assumption implicit in our earlier analysis (cf 
B 2.1), that one can meaningfully speak of the properties of effectively isolated droplets 
even in the critical region, in low enough dimensions. 

As we indicated in 8 1, the character of the arguments we shall deploy in carrying 
out this programme will contrast sharply with those utilised in the preceding sections: 
they will not require the mathematical sophistication of the latter (the key results we 
shall need are already available in (4.1)-(4.4)) but will offer, and occasionally demand, 
rather more physical insight. 

5.1. Preliminaries 

The simple droplet picture of Ising configurations advanced in S: 2 envisages a gas of 
a few effectively isolated ‘islands’ of one phase (black, say) embedded in a ‘sea’ of 
the opposite (white) phase. This picture is certainly appropriate at low temperatures. 
In the vicinity of the critical point, however, it is clearly wrong in two essential respects. 

First, as criticality is approached, the net volume of space occupied by black islands 
cannot remain small on the scale of the system volume: precisely at criticality black 
space and white space must have equal volumes. 

Second, and more subtly, one must recognise, following Kadanoff (1976a; see also 
Stauffer et a1 1971) that within each black island one will typically find a number of 
white ‘lakes’ which, in turn, may accommodate still smaller black islands as suggested 
schematically in figure 2. 

It is clear a priori (and will become clearer in the course of our explicit analysis) 
that the second effect is an essential ingredient of a properly scaling (and ultimately 
scale-invariant) theory of the critical region. Nevertheless it is the first effect which 
presents the basic problems: the second ‘effect’ (merely!) ensures that the problems 
encountered in characterising the configurations of the system as a whole are re- 
encountered in characterising the substructure of every island (i.e. at every length 
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Figure 2. Nested droplets (after Kadanoff (1976a)) 

scale!), For the moment, then, let us forget the (ultimately essential) fact that the 
black islands have such substructure and concentrate on the problems posed by the 
growth in their population with the approach to criticality, and the circumstances in 
which one might hope to find that these problems are tractable. 

It is apparent that, near criticality, the black islands embedded in the white 
background do not realise, in any obvious way, a dilute gas of droplets. This breakdown 
of the dilute droplet gas approximation is, in a sense, endemic to the critical region 
and would appear to have inevitable and fatal consequences for any droplet-based 
theory of the critical point. Indeed the prognosis for the viability of a droplet theory 
in dimension d = 3 is not good. Monte Carlo studies of three-dimensional Ising systems 
(Miiller-Krumbhaar and Stoll 1976) have long since established that the said black 
islands grow and merge with one another, as the temperature is raised, in such a way 
as to form an infinite (i.e. sample sized) connected black region, percolating through 
the background white region, at a temperature below that marking the true critical 
point. In such circumstances the spectrum of black islands cannot be identified with 
an assembly of droplets, whose (typical) largest member has a scale size (of the order 
of the correlation length) which diverges only at the critical point. If one insists on 
a droplet representation, the connected black regions must instead be viewed as being 
built from (possibly many) overlapping black droplets. While such a representation 
is always possible in principle, it is not obviously useful in practice, since it is not at 
all clear how to handle the statistics of overlapping (and thus, in effect, interacting) 
droplets. Indeed, it is in fact the ‘no-overlap’ approximation that forms the essential 
simplifying ingredient of the dilute gas picture. Recognising this, one may naturally 
inquire whether the (inevitable) failure of the dilute gas picture itself necessarily 
implies the failure of the no-overlap approximation. In fact, it does not. It is possible 
to envisage circumstances in which, even as the black droplet population grows critically 
to fill a volume comparable to the volume of the embedding space, the extent of the 
black droplet overlap remains small: in effect, droplet boundaries may remain dilute 
even when the droplets themselves do not. It turns out that this is the situation which 
holds in space dimensions suficiently low that the parameter &, defined in (4.4d), 
may be regarded as ‘small’. This assertion can be viewed as a plausible extension of 
the situation known to hold in one dimension where the universal configurational 
physics is captured by a domain wall (kink) gas model (Krumhansl and Schrieffer 
1975, Zinn-Justin 1981, Bruce 1981b) which is manifestly dilute in the low- 
temperature (critical) regime. (Indeed, the d + 1 limit of our theory can be shown to 
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yield the dilute kink gas results: cf appendix 2.) The assertion will be both refined 
and substantiated in due course. For the time being we shall presuppose its validity 
and proceed to show that there then emerges an explicit and analytically tractable 
droplet theory, whose fundamental characteristics are already implicit in the results 
of the preceding sections. 

5.2. The multi-droplet partition function and configuration-generating procedure 

In this section we shall show how one may calculate the full partition function for an 
Ising model given the assumption (still to be justified) that the coarse-grained configur- 
ations are built from nested black and white droplets whose boundaries are (in a sense 
still to be refined) dilute. 

Consider, then an Ising system of volume V which, without loss of generality, we 
shall take to be hyperspherical with radius L. We suppose that the possible configur- 
ations of this system are defined by the set of all distinct black and white patterns 
formed by superimposing black and white droplets of all possible shapes and scale 
sizes larger than some arbitrary minimum LO. The energy (and thence the statistical 
weight) of any configuration is specified by the associated total interfacial area. The 
partition function for the Ising system may then be written in the form 

where {C(L,Lo)}  denotes the set of configurations formed by droplets of scale size 
intermediate between Lo and L, while 2 is the associated dimensionless configurational 
energy. Adopting a strategy familiar from RG arguments (of which the following is 
a variant), let us decompose the configurational sum in (5.1), by separating out the 
contributions made by the smallest droplets-those with scale size in the range 
Lo+Lo+dLo. Explicitly we write 

Z ( L , L 0 , 5 ) =  c c exp(-[mC(L, Lo + a 0 1 1  
( C ( L ,  Lo+dLo)) (C(Lo+dLo.Lo)}* 

+ ZP[C(LO + a 0 3  L0)llI (5.2) 
where {C(Lo+dLo,LO)}* denotes the set of configurations of droplets of scale size 
Lo+Lo+dLo embedded in a space of droplets of scale sizes intermediate between 
Lo+dLo and L, and having some fixed configuration C(L,LO+dLo). Denote by 
V,[C(L, Lo+dLo)]  the volume of the space V occupied by a-coloured (a = B or W) 
droplets in the configuration C(L,  Lo+dLo) of droplets with scale sizes in the range 
Lo+dLo to L. Clearly 

independent of the specific configuration. Now let us make the ‘dilute boundary’ 
approximation: we suppose that the white volume Vw (black volume VB) presented 
to the black (white) droplets of scale size Lo + Lo + d L 0  is such that, with a high degree 
of probability, any such (scale -Lo) droplet found in the presented volume will be 
located ‘far’ from the latter’s boundaries. With this presupposition the problem posed 
by the configurational sum for the smallest (scale -Lo) droplets is then precisely that 
addressed in § 3. Invoking the results of that analysis (specifically (4.1) and (4.2)), 
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we fiild 

= 1 + Vw[C(L, Lo+dLo)]dS,'Lidll,(LO, 5) dLo 

+ VB[C(L, Lo +dLo)]dS;'L;dll,(Lo, 5) dLo + O(dLi).  (5.4) 

The second and third terms reflect, respectively, the contributions made by configur- 
ations in which one black (white) droplet, of scale size LO +LO + dL0, is found embedded 
in the available white (black) space presented by the larger droplets; the first term is 
associated with the configuration in which no such droplet is present. Notice that for 
(5.4) to be meaningful it is essential that the overall scale of the single-droplet partition 
function (i.e. the measure of the functional integral (2.12)) is correct (i.e. consistent 
with a zero-droplet configurational sum which is precisely unity). The quantitative 
reliability of the results which follow in this paper (though not their qualitative 
structure) thus rests squarely on the arguments substantiating the measure (2.12), as 
set out in appendix 1. Notice too that the temperature of the assembly appears in 
(5.4) only implicitly in the scale-invariant length 5. Now, substituting (5.4) into (5.2) 
and recalling the sum rule (5.3), we find 

= Z ( L ,  Lo+dLo, 5)[1 + VdG'Lidl//(LO, 5) dL0l 

implying the differential equation 

(lIz)aZ(L, Lo, 5)laLo=-VdSd'LidlL(Lo, 5) ( 5 . 5 )  
with solution 

Z(L ,  LO, 5) =ZW, L, 5) exp( VdSd' dRR-d4(R,  5)). ( 5 . 6 ~ )  

The 'partition function' Z(L,  L, 5) is a sum over all droplet-less configurations and is 
determined by the physical boundary condition. In the limit of an infinitesimal field 
there is but one such configuration and 

Z ( L ,  L, 5 )  = 1 (5 .6b)  

whence, recalling (4.1), we find from (5.6) the results 

Z =z(L, L O ,  5) = eZ1, F = F ( L , L o , ( ) = l n Z  =Z1. (5.7a, b )  

Deferring discussion of the conceptual significance of these results, let us pursue the 
implications of (5.76). Recalling (4.1)-(4.4) and writing V=Sdd-'Ld, we find in the 
thermodynamic limit (L/(  --* m) 
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Recalling the small-z expansion of $ ( z ) ,  equation (4.4c), we see that 

1 1 

= dz z - ~ - ' ( $ ( z ) -  n ? = O  &x"'")  + n ? = O  &, lL0,*dz z - ~ - ~ * ~ ' " .  I,,/, (5 .9 )  

Choosing nu such that 

n , > d v - l  

ensures that the first integral on the RHS of (5.9) is convergent in the critical limit 
(Lo/[  + 0). In this limit we then find that the free energy density (5.8) may be written 
in the form 

L-dF f s  4- f N s  

Here 

f s  = f 0 5 - d ,  

with 

( 5 .  loa) 

represents the sole non-analytic contribution, while f N s  contains terms with (at most) 
analytic dependence upon the reduced temperature (parametrised by [-""). 

The form of the singular part of the free energy is consistent with the expectation 
of strong scaling theory 

f s  - 5-'2-"'/" with 2 - a = d ~  (5.11a, 6 )  

and (cf the universality of the function 4) bears out the universal relationship between 
critical-point amplitudes which is a corollary of this scaling law (Stauffer er a1 1972, 
Hohenberg er a1 1976). These are the first of many explicit expressions we shall 
encounter of the manifestly scaling character of our theory. 

Now let us return to (5.7). These results coincide precisely with those of the 'naive' 
(dilute gas) droplet model. This correspondence is at first sight surprising. The 'naive' 
results presuppose droplets of only one phase (black, say) embedded in a background 
of the opposite phase, and do not account for the implied excluded volume: they thus 
neglect both the effects which (cf 0 5.1)  we identified as important in the critical region. 
On the other hand, the arguments leading to (5.7) do allow for both of these effects: 
they recognise that a droplet of one phase may always house subdroplets of the 
opposite phase (cf the second and third terms in (5.4)) and take explicit account of 
excluded volume effects (cf the factors of Vw and V, in (5.4)). The reason for the 
coincidence of the results is that (as regards the zero-field thermodynamic properties) 
the two effects cancel! Specifically, each spurious (black droplet within black droplet) 
configuration included in the naive calculation by virtue of its neglect of excluded 
volume (but correctly excluded in the second calculation) makes the same contribution 
to the partition function as some allowed (white droplet within black droplet) configur- 
ation, erroneously omitted from the naive calculation by virtue of its neglect of droplet 
nesting (but correctly included in the second calculation). 
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Equations (5.7) are thus intelligible. Their utility is limited, however, in two 
respects, Firstly, their zero-field character means that they do not yield information 
regarding the order parameter and its susceptibility. Secondly, their form does not 
readily permit one to check the self-consistency of the (dilute droplet boundary) 
approximation on which they rest. These deficiencies may be rectified by devising a 
procedure which will generate explicitly the canonical ensemble of configurations 
underlying (5.7). 

The elements of the procedure are implicit in the arguments we have already 
deployed in this section-in particular in (5.4) which accords to the function GiR, 5 )  
an immediate physical significance: according to (5.4), 4(R ,  5 )  dR defines the mean 
fraction of available space occupied by droplets of scale size R + R + dR. Our configur- 
ation generating procedure follows from this premise. Specifically, we take an 
ensemble of hyperspherical regions of radius L ;  these regions define our ensemble of 
Ising systems, so that L is to be regarded as a macroscopic length which will generally 
be large compared with the correlation length. We take these regions to be uniformly 
white; this choice of ‘boundary condition’ plays the role of the choice of sign for the 
infinitesimal field necessary to define uniquely the low-temperature phase of an Ising 
system. We then decorate these regions with successively smaller and smaller droplets 
of both black and white. At each stage of this differential dressing procedure we utilise 
black (white) droplets of the scale sizes (R + R + d R )  then appropriate in such numbers 
as to yield a mean fractional coverage $(R, 5 )  dR of the existing white (black) space. 
Although the largest droplets possible in principle have scale sizes -L, the form of 
$(R, 5) (equation (4.3)) ensures that the largest possible in practice have scale sizes 
-5 << L.  The decoration procedure is terminated when the dressing droplet size reaches 
the arbitrary lower limit, Lo. 

In the remainder of 9: 5 we shall set about the exploration and justification of this 
procedure. We shall look firstly at the degree of long-range order (the order parameter) 
of the configurations which the procedure generates. Armed with the results and 
insights thus acquired, we shall then turn to establish that the generating procedure, 
and the droplet picture it implies, are indeed legitimised by the smallness of iJo in 
low space dimensions. 

5.3. Application of the procedure: the order parameter 

Consider an ensemble of configurations constructed by decorating an assembly of 
initially white L-sized regions with black and white droplets of all scale sizes SLo ,  in 
the fashion described in 0 5.2. We associate with each configuration a quantity r$ 
measuring the amount by which the fraction of the decorated space occupied by white 
exceeds the fraction occupied by black, in the given configuration. The ensemble 
average (r$)L,Lo,t  may then be taken as the order parameter characterising the degree 
of long-range order of the ensemble. 

It is helpful to write 

Q(L, Lo, 5 )  ( ~ $ ) L , L ~ , , C  = 1 - 2*&, Lo, 5) (5.12) 

where * represents the mean (ensemble average) fraction of space coloured black. 
To determine the manner in which 0 evolves with the approach to criticality, we 
study the fashion in which W evolves with the minimum droplet size, Lo. Specifically, 
we imagine dressing each configuration in our ensemble with droplets of scale sizes 
Lo+Lo-ldLol. A fraction $(Lo, 5)ldLoI of the available black space, which itself 
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forms a fraction q ( L ,  Lo, 8) of the whole, will then be recovered with white dressing 
droplets; an identical fraction of the white space, then occupying a fraction 1 -  
P(L, LO, 6) of the whole, will be decorated with black dressing droplets. It follows that 

d W L  Lo, 5 )  = -‘W, Lo, ()$(Lo, 5)IdLol +[I -‘W, Lo, E)I$(Lo, 5 ) I d o I  

which has the solution 

(5.13) 

(5.14) 

where we have taken the boundary condition 

W L ,  Lo, 5 )  = 0. (5 .15)  

Now recalling the scaling form for J I ( R , t )  (equation (4.4a)), we find that in the 
thermodynamic limit itself assumes the scaling form 

In  the critical limit (Lo/[ << 1) we may write 

with 
1 m 

Qo=exp( -2~o  d z ~ - ~ ( ~ ( z ) - $ ~ ) - 2 / ~  dzz-’$(z)) (5.17b) 

to within corrections that are analytic in the reduced temperature. Now, combining 
(5.12), (5.16) and (5.17), we find for the order parameter the limiting critical behaviour 

m 

Q ( L ,  Lo, 5 )  = exp d t  t-’$(t)) = Qo(~/Lo)-@’” ( 5 . 1 8 ~ )  

with 

p / u  = 2*0. (5.18b) 

Taken together, ( 3 . 2 5 ~ )  and (5.18b) define the two critical exponents necessary (within 
the strong scaling theory realised in our droplet framework) to specify the complete 
set of critical exponent values. Unlike v, whose inverse appears (cf 0 8) to have a 
power series expansion in E = d - 1, the exponent p carries the essential singularity 
of the droplet concentration parameter JIo. 

From a strictly numerical point of view (5.186) is disappointing. Taking the case 
d = 2 ( E  = 1) and assigning to U its appropriate exact value U = 1 (Onsager 1944), we 
find p -0.02 in poor accord with the exact result p =0.125. The discrepancy is 
scarcely surprising in view of the sensitivity of the value of Go to the manner in which 
(4.4d) is extrapolated to d = 2. At the same time, there is some encouragement to 
be found in the observation that the exact d = 2 ratio p/2u = 0.0625 goes some way 
towards substantiating the smallness of JIo and thus (cf 0 5.4) the appropriateness of 
the droplet picture in two dimensions. 
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The chief value of (5.186), however, lies at a conceptual level, which we shall 
explore further in Q 7. For the moment we turn to examine in more detail the 
consistency of the framework on which the result is based. 

5.4. The consistency of the generating procedure 

In this section we shall explore more fully the configuration-generating procedure 
introduced and applied in preceding sections. Our specific aim is to justify the claim 
made earlier that the procedure is internally consistent for small enough values of the 
parameter t+bo. This aim may best be realised with the aid of the droplet distribution 
function n,(R, 5 )  defined such that n,(R, 5 )  dR is the mean number per unit volume 
of droplets having scale size R + R +dR and colour a = W or B. Recalling the 
generating procedure, we see that the numbers n,  (R, 5 )  dR will reflect the fractions 
of the overall space that are available at the stage where the R-sized droplets are to 
be utilised, together with the fractional coverage appropriate for R -  sized droplets. 
Explicitly, taking the embedding space to be white, we find 

( 5 . 1 9 ~ )  

(5.196) 

where uo(R) (equation (4.2)) is the mean volume of droplets of scale size R (equation 
(4.7)) prior to their decoration with smaller droplets; we shall refer to uo(R) as the 
bare droplet volume. Recalling ( 4 . 4 ~ )  and (5.16), we see that in the thermodynamic 
limit the droplet distributions assume the scaling forms 

n,(R, 5 )  = uo'(R)R-'n',(R/5) ( 5 . 2 0 ~ )  

where 

To utilise these results one must appreciate that the actual connected volume of 
any given droplet remaining after subsequent decoration with smaller droplets differs 
from the bare value UO. We may express this 'dressed' volume in the form 

V(R, Lo, 5 )  = vo(R)(1 -Yo(R, Lo, 5 ) )  (5.21) 

where ~ o ( R ,  LO, 5 )  is the total fraction of a given droplet of scale size R which is 
covered by smaller droplets. A little thought reveals that Y o  satisfies a differential 
equation (cf (5.13)) 

whence, taking the boundary condition Yo(R, R, 5 )  = 0, 

(5.23) 

(5.24) 
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Within the critical region this result assumes a scaling form 

to within correction terms that are analytic in the reduced temperature. 
Finally, we shall find it useful to define a function nB1(R, 6) such that nB1(R, 5 )  dR 

is the mean number of droplets having scale size R + R +dR and colour opposite to 
that of the erxbedding space, which are not themselves housed within still larger 
droplets in that space (i.e. droplets which may be ‘reached’ from the boundaries of 
the embedding space without traversing any interface). In close correspondence with 
(5.196) we find for this number density of ‘one-subdroplets’ the form 

~ B I ( R ,  5)=(1-qo(L, R, 5))uG1(R)9(R, 6). (5.26) 

In Q 6 we will explore several different aspects of these results; our present purpose, 
however, is to use them to substantiate the overall consistency of the procedure we 
have devised, and to expose the basic characteristics of the configurations which it 
generates. 

To substantiate the generating procedure, we must clarify and justify the essential 
(‘dilute droplet boundary’) approximation on which it is based. To this end let us 
recall the elements of the generating procedure. At each state of the procedure one 
uses dressing droplets (of each phase) with such frequency as to cover that fraction 
of the available space (the space then occupied by the opposite phase) prescribed by 
the function $(I?,[) appropriate to the scale size R of the dressing droplets. The 
significance we have accorded to the function 4(R ,  6) is based upon its role in (5.4) 
which presupposes that the volume available for the dressing droplets is sufficiently 
large and compact to justify the neglect of boundary effects implicit in our calculation 
of Z1. In fact, the volume available for dressing with droplets of scale size R will be 
fragmented in a fashion prescribed by the distribution of larger droplets already 
present. It is then clear that our use of the function 4(R, 5 )  is justifiable only if the 
degree of fragmentation is not so great that the bulk of the available space actually 
consists of regions too ramified to accommodate an R-sized droplet. More precisely, 
the procedure will be self-consistent if and only if a dressing droplet, randomly sited 
within the available space, will, with a high degree of probability, have no intersections 
with the boundaries of that space. At first sight it would appear that this condition 
is bound to be violated if the generating procedure is taken to a sufficiently advanced 
stage, since each stage generally results in the addition of still further droplets, 
producing a still higher degree of fragmentation of the available space. The situation 
is redeemed, however, by the fact that, as the dressing programme proceeds, and the 
space becomes more and more highly populated with droplet boundaries, the scale 
size of the droplets to be accommodated is also being systematically reduced. We 
now establish that this trade-off is, indeed, sufficient to vindicate our procedure. 

Consider a region of (initially) white space of volume V and scale size L dressed 
with droplets of scale sizes Z=LO with L >>e >>Lo. Now suppose that we extend the 
dressing procedure to include the droplets of scale size L, + Lo - IdLol. To legitimise 
our procedure it is sufficient to examine the dressing of the white space (then available) 
with black droplets; the dressing of the black space with white droplets may be treated 
in a similar fashion. It will be helpful to address the problem in two stages. Consider 
first the portion of the white space which is connected to the system boundary (i.e. 
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the 'background' space which is not covered by 'one-subdroplets'). The mean volume 
of this connected white space follows from (5.21) and (5.23) as 

v c w  = V(1- 9o(L, Lo, 5 ) )  - V(LO/O~L" (5.27) 

which actually vanishes in the critical limit: one-subdroplets actually fill the entire 
system space in the asymptotic critical limit. (This result is less disconcerting when 
one recalls that each such one-subdroplet itself has droplet substructure.) Now a 
black dressing droplet, of scale size Lo, implanted in this connected white space will 
intersect an existing boundary if its centre lies within a distance -Lo of such a boundary. 
The portion of the connected white space which is dangerous in this regard (i.e. the 
portion which lies within Lo of an existing droplet surface) has volume 

A vCw = L~ v I,, (R ,  (R, Lo, 5 )  (5.28) 

where a(R,  Lo, 5 )  is the mean surface area of droplets of scale size R, considered in 
$4.3.  (We have reparametrised the results of this section to eliminate T in favour 
of 5.) Invoking (4.17) and (5.26) we find 

AVcw - (I,oV(Lo/5)ILo. (5.29) 

Evidently, then the ratio A Vcw/ Vcw is O((I,o). It follows that, as the dressing procedure 
evolves, the use of the concentration function (I, remains legitimate in all but a 
vanishingly small (Go- sized) fraction of the connected white space. 

This argument is readily extended to legitimise the use of the function (I, to 
characterise the dressing in the entire white (or black) space. Specifically one finds 
for the total volume of white space in the limit L >>[ >>Lo 

v w  = V(1 - 9 ( L ,  Lo, 5 ) )  = v /2  

L 

(5.30) 

reflecting the fact that, in this critical limit, the space is equally populated with black 
and white. The portion of this (fragmented!) white space which lies within a distance 
-Lo of an existing droplet surface has volume 

A VW = LO V I dR ( n w ( R ,  5 )  + n B(R, [ ) ) a  (R ,  5, LO)  - $0 V (5.31) 

again indicating that our use of the function (I, will result only in an error of order Go. 
These arguments are, we believe, sufficient to justify the generating procedure we 

have devised. However, there are a number of complementary observations which 
may usefully be made at this point, since they will serve to illuminate how the smallness 
of (I,o may be invoked to resolve the many apparent paradoxes one discovers in utilising 
the generating scheme. 

Specifically, let us now enquire in what sense it can be meaningful to dress an 
existing droplet with subdroplets (of the opposite phase) which are only infinitesimally 
smaller. The answer lies in the fact that, in the configurations yielded by our procedure, 
the only subdroplets which will be found in our bounding droplet in any abundance 
will actually have scale sizes very small compared with that of the bounding droplet. 
To be explicit, consider a ('bounding') droplet of scale size Ro embedded in a space 
which is dressed with droplets of all scale sizes >Lo =fRo, where f< 1. Let us suppose 
that RO << 5, so that the population of droplets embedded within the bounding droplet 
is at its maximum, and our problem is presented in its most acute form. We will first 

L 

Lo 
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of all establish how small f has to be in order that the mean number of one-subdroplets 
to be found in the bounding droplet should be equal to unity. Recalling (5.26),  we 
see that f is prescribed by the requirement 

R” 
1 = uo(Ro) I, dR n ~ i ( R ,  5) 

0 

(5.32) 

Secondly, let us enquire how small f has to be to ensure that a (mean) fraction g of 
the bounding droplet is covered by one-subdroplets. Evidently 

g = qo(Ro,fRo, 5) 
from which we find that 

f =.= ( 1  - g y o .  (5.33) 

These two results vindicate the answer we have already proferred to the question 
posed above, and clarify the character of the critical-point droplet configurations. The 
picture that emerges is this. In the critical limit our configurations are built from 
statistically self-similar droplets of the two phases. Each droplet has within it a 
‘lowerarchy’ of embedded droplets whose scale sizes are bounded below by the cut-off 
length LO. Although (to the extent that its scale size is large compared with Lo) each 
droplet is essentially covered with its one-subdroplets, the largest of these is typically 
very small compared with the given droplet’s scale size, and the extent to which the 
boundaries of these one-subdroplets intersect one another (or intersect the boundary 
of the given droplet) is small. In both instances the term ‘small’ has a precise 
significance set by the value of ccl0. 

6. Droplet number distributions 

In this section we shall explore the droplet number distributions determined in § 5 .  
We shall see that both the forms and properties of these distributions differ in a 
number of illuminating respects from those anticipated on the basis of droplet 
phenomenologies. 

We begin by observing that the distribution functions satisfy the two consistency 
requirements 

1 = 1 - q o @ ,  Lo, 5) + 
L 

dR nw(R, S)V(R, Lo, 5) +I dR ~ B ( R ,  5) V(R, Lo, 51, 
Lo 

( 6 . 1 ~ )  
I:, 

Q(L,  LO, 5) = 1 - q o ( L  LO,  5) + I dR ;iw(R, 6) V(R, LO, 5) 
Lo 



Droplet theory in low dimensions: Ising systems in zero field 1751 

The first term on the RHS of each equation represents the fraction of the original white 
space remaining after dressing with droplets of scale sizes >Lo. The second term 
represents the fraction of space occupied by white droplets. The third term gives (in 
magnitude) the fraction of space occupied by black droplets. The first equation merely 
checks 'space conservation'; the second displays consistency with our earlier results 
(5.12), (5.14) for the order parameter. 

In demonstrating that (6. la, b )  are, indeed, satisfied with the identifications pre- 
scribed in (5.19), (5.23) and (5.24) one discovers that interesting cancellations occur. 
Specifically, a number of terms on the RHS of (6.16) which vanish critically as lt1°'2 
(given the identification (5.18)) cancel to recover the original result. These cancellations 
are at the heart of a significant contradiction between the explicit forms of the 
distribution functions, obtained here, and the forms postulated on the basis of 
phenomenological arguments. To expose this contradiction let us consider the key 
equation of the phenomenological framework, the droplet representation of the order 
parameter. When suitably recast, the phenomenological arguments yield an equation 
with the following structure (Binder 1976): 

m 

Q(L,  Lo, 5) = 1 - 2  dR R-"-'q'(R/[) 

with 4' an unknown scaling function, and with the exponent A prescribed by 

A = p / v .  ( 6 . 3 ~ )  

With the aid of (5.20), (5.23), (5.24) and ( 6 . 1 ~ )  one finds that the result (6 . lb)  can 
indeed be recast in the form (6.2), in the thermodynamic limit. The scaling function 
4' is then explicitly prescribed as 

9 ( z )  = L:" E&) exp( - lo* dy Y - ' ( $ ( Y )  -Go)). 

However, in contrast to ( 6 . 3 ~ )  one finds that the exponent A appearing in (6.2) must 
be identified as 

(6.3b) 
where we have made use of (5.186). 

To identify the origins of this contradiction let us review the argument by which, 
within the phenomenological framework, one infers the result (6.3a), given the general 
form (6.2). The argument requires that one match the anticipated power law behaviour 
of the order parameter to that predicted by (6.2). This matching is most conveniently 
effected by differentiating (6.2) with respect to 6: 

aQ(L, Lo, [)lag = 25-2 dR R-Aq"(R/[) = I dz z-*@'(z) .  (6.4) 

Comparison with the anticipated behaviour 

A = $0 = / 3 / 2 ~  

m X 

Lo L a i t  

aQ(L, Lo, [)/a6 - 5-p/"-1 (6.5) 
does indeed seem to suggest the identification (6.3a), with the limiting ( L o / ( + O )  
value of the integral in (6.4) defining the amplitude of the power law. However, this 
reasoning presupposes that the integral in (6.4) remains finite in the critical limit; in 
fact, at least within the droplet theory explicitly realised here, the value of the integral 
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vanishes in the critical limit. Specifically one finds that, with the explicit form for 4'' 
prescribed above, and with the identification (6.36), 

m 

dz z - * ~ ~ ( z )  2: -~,hoQ&;*'[-*' (6.6) h,,, 
where Qo is the amplitude appearing in ( 5 . 1 8 ~ ) .  Combining this result with (6.4), 
one finds immediately the same prediction as that yielded by differentiating the power 
law ( 5 . 1 8 ~ )  directly, confirming the consistency of the identification (6.36). 

We have no clear understanding of the physical significance of the sum rule on G f  
which dictates that the integral (6.6) should vanish in the critical limit, although it is 
tempting to associate it with the more obvious sum rule which 4' must satisfy in order 
that the order parameter (equation (6.2)) should itself vanish at criticality. Neverthe- 
less, the moral at least is clear: one cannot reliably identify the exponents characterising 
the scaling properties of phenomenological droplet distribution functions by matching 
to expressions which are sensitive only to the distribution function moments. 

Thus far we have shown that the identification (6.3~) is not mandatory and that 
the identification (6.36) is internally consistent. We now proceed to show that the 
latter identification, which emerges naturally within our explicit theory, actually 
serves to resolve a problem characteristic of the phenomenological identification. 
Specifically, we consider the second moment of the droplet size distribution 

whose singular behaviour is that of the mean droplet size. Recalling (5.196) and 
(5.25), we find that s may be written in the form 

m 

s = dR R-2*td-1SI(R/[) 

where s' is a prescribed function. Again the structure of this result coincides with that 
of the simple phenomenological droplet theory; again, however, our explicit theory 
requires that A be prescribed by (6.36) rather than ( 6 . 3 ~ ) .  The consequences for 
the singular behaviour of the mean droplet size are significant. According to (6.8) 

s where 8 = ( d  - 2A)v (6.9a, 6)  

is the 'droplet size exponent'. Invoking the relation 

y = d v  - 2 p  (6.10) 

which is necessarily fulfilled within any strong scaling theory (cf § 7), we find that 
while the droplet phenomenology ( 6 . 3 ~ )  implies 

e = y  

our explicit theory yields 
( 6 . 1 1 ~ )  

e = r + p .  (6.1 16) 
Now, in setting up our theory we argued that Ising configurations may be built 

from nested droplets, in low dimensions where the smallness of 4o ensures that the 
troublesome boundary-overlap effects are small. In exploring the implications of 
(6.11a, 6 )  we must enquire to what extent our putative droplet building blocks can 
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actually be identified in a given configuration, since the identification is a clear 
prerequisite for a ‘measurement’ of the droplet size and its exponent. We have already 
noted in § 5.1 that, in d = 3, this identification is problematic in view of the percolation 
of islands (more precisely ‘nearest-neighbour clusters’) of black spins through a white 
ordered phase, at a temperature below T,: the mean cluster size thus diverges at this 
percolation point, and not at the critical point, in three dimensions (Muller-Krumbhaar 
and Stoll 1976, Sykes and Gaunt 1976). In the d = 2 nearest-neighbour Ising model, 
however, the coincidence of the (zero-field) percolation point and the critical point 
is mandated by the topology (Coniglio et a1 1977), and the mean cluster size does 
diverge critically, engendering the expectation that the critical properties of ‘clusters’ 
might directly correspond with those of ‘droplets’. Hitherto this identification has 
foundered on the fact that, according to series expansion studies of the triangular 
lattice (Sykes and Gaunt 1976), the mean cluster size diverges with an exponent 
8 = 1.91 f 0.01 which is irreconcilable with the phenomenological prediction (6.1 l a ) ,  
8 = y = 1.75. We see, however, that the observed value is close to the prediction 
(6.116) of our explicit droplet theory, 0 = y + p  = 1.875. (We have made use of exact 
d = 2 exponent values.) The small remaining discrepancy may be no more than an 
indication that it is difficult to obtain long enough series to do full justice to the nested 
droplet structure. In this context it is pertinent to note that the mean bare cluster 
size (i.e. the mean volume of ‘one-subdroplets’, cf (5.26)) has the critical behaviour 
of the quantity 

cc 

dR nB1(R, [ ) v i  ( R )  - [ 8 ’ / ”  
= I,, 

with 

( 6 . 1 2 ~ )  

8‘=du  = y + 2 p  (6.126) 

which has the value 8’ = 2 in d = 2. It follows then, that a study which, by accident 
or design, includes in the ‘cluster size’ the entire space contained within the cluster 
boundaries (space which, it will now be appreciated actually accommodates still further 
clusters) should yield a cluster size exponent higher than that predicted by (6.116). 
This observation is consistent with the sign of the discrepancy noted above; further 
studies are clearly necessary to establish whether the discrepancy should indeed be 
understood in this way. 

In summary it seems reasonable to interpret the success of the prediction (6.116) 
as a favourable reflection on both our droplet model itself and the supplementary 
assumption (which is not intrinsic to the framework of our theory) that our droplet 
properties are directly mirrored in the properties of nearest-neighbour Ising model 
clusters in d = 2. This interpretation is, however, proferred with reserve in view of 
the fact that there exist at least two alternative theories of the observed cluster size 
behaviour whose relation to our own is not fully clear. 

Firstly, we observe that the prediction (6.1 16) coincides with a conjecture by 
Stauff er (1977) based on the ‘generalised’ droplet phenomenology developed by 
Binder (1976). It would appear that this phenomenology may be regarded as an 
attempt to allow for the existence of droplet substructure; in this respect it is in 
keeping with the spirit of the present theory. However, although this phenomenology 
does embrace the prediction (6.116) (as one special case), its predictions for the 
exponents characterising the scaling form of the number distribution function. n g  

remain inconsistent with our own for the reasons set out earlier in this section. 
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Secondly, we note that Coniglio and Klein (1980) have suggested a strategy by 
which one may reconcile the observed behaviour of lattice king model configurations 
with the predictions of the simple droplet theory (specifically, (6 .11~)) .  They propose 
a prescription by which the clusters of the lattice Ising model may be broken into 
smaller clusters, whose percolation point (for any dimension) does coincide with the 
king model critical point. They present a RG argument indicating that the mean size 
of these clusters diverges in the manner prescribed by the simple droplet result (6.1 la ) .  
We have not been able to see how this interesting result should be viewed within the 
present framework. 

7. Ordering coordinate fluctuations 

Thus far we have restricted our attention to properties (typified by the order parameter) 
which are sensitive only to the mean numbers of droplets of each scale size appearing 
in the Ising ensemble. We now extend our study to include properties (typified by 
the order parameter susceptibility) which, to varying degrees, reflect the fluctuations 
in droplet numbers about their mean values. 

The concept of ‘number fluctuations’ requires some elaboration. Specifically, we 
must recall that the function $(R, 6) around which our configuration-generating 
procedure is constructed, prescribes only the mean fraction of available space to be 
occupied by droplets of scale sizes R -P R + dR, and thus the mean number of droplets 
with scale sizes in that range. Accordingly the droplet distributions which we have 
established are to be thought of as describing the relevant droplet numbers averaged 
over an ensemble of configurations generated by our procedure. In any given member 
of the ensemble the number of droplets of a given scale size will not, in general, 
coincide with its mean value. It is the nature and implication of such fluctuations 
which we shall now explore. 

Let us define the specific problem to be addressed. Consider the black droplets 
with scale sizes in the range R s +  R,+dR,  found embedded in an ensemble of king 
samples each of which is initially white, has a macroscopic volume V, and is sub- 
sequently dressed with droplets of all scale sizes  LO, where Lo<R, .  We associate 
with each black R,-sized droplet a ‘droplet coordinate’ 4% giving the amount by 
which the fraction of the droplet space that is white exceeds the fraction that is black. 
Our aim is to characterise the distribution of #Rs values. 

The motivation is twofold. Firstly, we will find that the moments of the distribution 
furnish additional predictions for critical exponents (specifically, the susceptibility 
exponent y ) .  Secondly we shall see that the probability density function (PDF) for the 
coordinate 4Rs, which we shall calculate in the critical limit 6 >> R, >>Lo, yields further 
insight into the nature of the critical-point configurations. 

The droplet coordinate PDF may be studied most conveniently with the aid of the 
associated characteristic function 

e w ;  Rs, Lo, 6) = (exp(iH#Rs))I+* (7.1) 
whose logarithm has an expansion in the cumulants of the #Rs distribution (see e.g. 
Kendall and Stuart 1963) 
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(7.26) 

where the superscript (c) denotes connected part. Adopting the strategy employed 
in 5 5.3, we will determine the characteristic function (7.1) by setting up and solving 
the differential equation which describes the way in which the function evolves with 
the minimum dressing size LO. 

Consider, then, a particular R,-sized droplet characterised by a particular value 
of the coordinate dRS. Now imagine dressing the ensemble (and thus this droplet in 
particular) with further droplets of scale size LO + LO - JdLol. Let the numbers of white 
(black) droplets utilised to decorate the given droplet in this infinitesimal process be 
Nw(NB). The change in the value of the coordinate 4Rs (for the selected droplet) is then 

d4R, = ~(Nw-NB)(LO/RS)~  (7.3) 

where we have made use of the form of the bare droplet volume, (4.2). A little 
thought now reveals that the characteristic function for the droplet coordinate 4~~ in 
the new ensemble thus generated may be written in the form 

(7.4) 

(i) averages over the spectrum of Nw and NB values appropriate for a given dRS and 
(ii) averages over all values of 4R* in the original ensemble. 
Consider the first of these averaging procedures. The rationale here is that our 

ensemble will contain many R,-sized droplets characterised by the same specific value 
of c$~,. Our generating procedure dictates that the mean numbers of black and 
white droplets to be utilised in the dressing of &-sized droplets characterised by a 
given C $ R ~  should be 

@ ( H ;  Rs, Lo- IdLoI, 5) = ((exP{fiH[4~~+ ~(Nw-NB)(Lo/Rs)~I) ) )  

where the notation is supposed to indicate an averaging procedure in which one 

(Nw) = $4(Lo, -4R,)(R,/Lo)djdLol, ( 7 . 5 a )  

(NB)=&(Lo, +4R,)(R,/Lo)dldLo/. (7 .5b )  

Now in the differential limit the probability that any given R,-sized droplet (with 
coordinate dRJ will receive zero droplets of species a is 1 - (Ne);  the probability that 
it receives precisely one droplet of species a is (Na);  the probability that it receives 
more than one droplet is negligible. The first averaging procedure then yields 

((exp{iH[4Rs+2(Nw -NB)cO/R,)~II~))  

= (exp(iH&,)U + IdLoIWo, S)(Rs/L~)d[cos(2H(L~/Rs)d) - 1 

- i 4 R .  s i n ( 2 ~ ( ~ 0 / ~ , ) ~ ) 1 } ) .  
Recalling the defining equation (7.1) for the characteristic function, one may now 
readily perform the remaining average over q5R,. The results may be expressed in 
terms of the differential equation 

d In B ( H ;  R,, LO, 5)/aLo 

= -$(Lo, T)(Rs/Lo)d{cos(2H(Lo/Rs)d)  

- 1 - s i n ( 2 ~ i ~ o / ~ , ) ~ ) ( a / a ~ )  In@(H;  R,, L O ,  6)). (7 .6)  
The boundary conditions for this equation are dictated by our dressing procedure 
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which ensures that, for Lo = R,, the coordinate dRS = -1 for all (black) R,-sized droplets 
in the ensemble, so that 

(7.7) 

Equations (7.6) and (7.7) constitute the central results of this section. To explore 
their implications we make use of the cumulant expansion for the characteristic 
function, ( 7 . 2 ~ ) .  The boundary condition (7.7) then assumes the form 

(7.8) 

while (7.6) yields an infinite series of coupled differential equations satisfied by the 
cumulants. 

Let us first consider the equation satisfied by the cumulant 0“) which follows on 
equating terms linear in H in the cumulant representation of (7.6) 

-iH $ ( H ;  R,, R,, 5 )  = e  . 

@‘“‘)(Rs, Rs, 5 )  = -&,I 

a@.“’(R,, Lo, S ) / a L o =  -2$(Lo, 5)@‘’’(R,, Lo, 6). (7.9) 

With the boundary condition (7.8) this equation has the solution 
Rs 

@‘”(R,, LO, 5 )  = ( ~ R . ) L ~ , *  = -exp( -2 ILo dR $(R, 6)) 

= -[I - 2’4’(R,, Lo, 511. (7.10) 

For R,>>[, equation (7.10) shows that (4R.) is independent of R,  and (cf (5.12)) 
coincides with the order parameter for a system characterised by parameters 5, Lo  
(and having ‘black’ boundary conditions). This result expresses the fact that any 
droplet with scale size large compared with 5 may itself be regarded as an Ising 
system. On the other hand, for 6 >>Rs, Lo we find from (7.10), (5.14) 

Rs 

@(‘)(Rs, Lo, 5) = -exp( - 2J10 lL0 dR R-’ (7.11) 

a result which we shall utilise in due course. 

the O ( H 2 )  terms in the expansion of (7.6): 
The differential equation satisfied by the second cumulant is obtained by equating 

(7.12) a@.‘2’(Rs, Lo, 5)/aLo=4$(Lo, 5)E@‘2’(Rs, Lo, 5)-(Lo/RJdI  

The general solution is 

Constant+4RLd dR‘ $(R’, [ ) ( R ’ ) d  exp(4 JRRsdR $(R,  t i ) ] .  
(7.13) 

Invoking the boundary condition (7.8), we find 
Rs R ’  

@(2)(Rs, Lo, 5 )  = 4 R i d  dR’  $(R’, 5)(R’)d exp( -4 lLo dR $(R, e) ) ,  (7.14) 
JLo 

Let us examine this result first of all in the limit R, >> 6, Lo. In this limit we find 

@‘(2)(Rs, Lo, 5 )  = @L2)(6/Lo)d-4’0 (7.15) 
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with 

(7.16) 

Now, as we have already noted, in the prescribed limit, an R,-sized droplet itself 
represents an Ising system (in the thermodynamic limit). According to the central 
limit theorem (see e.g. Baker and Krinsky 1976) the coordinate dRS must then be 
normally distributed, with a variance (second cumulant) which is vanishingly small on 
the scale of the squared mean (to the extent that R, >> 5) and which is a direct measure 
of the susceptibility. Specifically we anticipate 

(7.17) @(*'(RS, Lo, 5) = U (R,)-'x. 

Comparison of (7.16) and (7.17) yields the identifications 

x -xo(~/Lo)''" ( 7 . 1 8 ~ )  

with 

Y = ( d  - 440)h  ,YO = vo(R,)@A2'. (7.186, c )  

Equation (7.186) bears out the scaling relation anticipated in (6.10). 
Now let us return to examine (7.14) in the limit 5 >> R,. In this region we find 

Imposing the additional condition R ,  >>LO, we obtain 

@(')(RS, Lo, 6) (440/d)(Lo/Rs)~*O (7.19) 

where, in keeping with the philosophy of our calculation, we have neglected O(4:) 
contributions to the prefactor. Comparison of (7.11) and (7.19) reveals that, in the 
limit 5 >> R ,  >>LO, 

@(''(R,,Lo, 6)/[@."'(R,, Lo, 6)122:41/10/d. (7.20) 

We defer discussion of this result and proceed, instead, to substantiate the expectation 
which it engenders, namely that in the regime 6 >> R, >>LO the droplet coordinate 
distribution assumes a non-trivial universal form. 

Consider, then, the differential equations generated by equating the terms of order 
H" in the cumulant expansion of (7.6). For n even we find, in the prescribed regime, 

We have neglected contributions to the RHS of this equation that mix in the cumulants 
@(" -*', 

-4' . . . . One may readily establish that these terms merely contribute O($g) 
corrections to the amplitude of the power law governing the asymptotic (Lo/R,<< 1) 
behaviour of d"). For n odd we find within a similar approximation 

(7.216) E )  = 2n&@'"'(R,, Lo, 5) +2n(E) Lo ( n - l ) d  -@ 1/10 (1) (R,, Lo, 5) 
aLo Lo Lo 

where we have retained the contribution made by @('I since it, alone amongst the 
cumulants, exhibits power law behaviour (as function of L,/R,) with an amplitude 
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that is O(1) (rather than O(G0)). Equations (7.21a, 6 )  have a structure similar to that 
of (7.12) and may be solved in a similar fashion to yield, in the regime t >> R, >> Lo, 

@(R)(Rs,  LO, 5 )  = [2"90/(n - ~ ) ~ I ( L O / R , ) ~ ~ ~ ~ ,  n >1. (7.22) 

The form of the characteristic function in this regime now follows from (7.2): 

(7.23) 

The PDF of the droplet coordinate dRS follows as the Fourier transform of the 
characteristic function 

a- 

d H  exp(-fi&,M(H; R,, LO, t). I-, P ( ~ R , ;  Rs, Lo, t )  = ( 2 ~ 1 - l  

In the prescribed regime it is clear from (7.23) that the PDF assumes a universal form 
when normalised to unit mean. Explicitly 

P * ( U ) = ~ / ,  2 7  --CO dh 

( 7 . 2 4 ~ )  

(7.246) 

( 7 . 2 4 ~ )  

One may show analytically that the characteristic function (7.23) vanishes exponen- 
tially for large H ;  accordingly the associated PDF is not singular and may be computed 
by numerical evaluation of the Fourier transform ( 7 . 2 4 ~ ) .  The result is shown in 
figure 3. We have set d = 2 and i,b0 = p/2u = h, in keeping with (5.186) and the exact 
values of the exponents p and U in two dimensions. The form of the distribution 
prompts a number of remarks. 

Firstly we note the narrowness of the distribution on the scale of its mean, already 
manifested analytically in the O($O) value of the ratio prescribed in (7.20). The 

01 j :< 
Droplet  coordinate 

Figure 3. Probability density for a (black) droplet coordinate in the regime 5 >>Rs >>Lo, 
as prescribed in ( 7 . 2 4 ~  1 with d = 2, $0 =A. 
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implication for the critical-point configurations is clear: droplets whose scale sizes are 
small compared with 6 are ordered in a fashion which is more homogeneous the lower 
the space dimension. 

Secondly, figure 3 reveals a strong asymmetry in the manner in which the droplet 
coordinate is distributed about its mean value: fluctuations whose sense is opposite 
to that of the prevailing intra-droplet order are much more strongly favoured than 
fluctuations tending to enhance that order. 

Finally we may usefully make contact with independent calculations based on 
approximation schemes quite different to that employed here, which corroborate the 
structure suggested in figure 3. The studies in questior. (Bruce 1981b, Binder 1981) 
are concerned with the distribution of ‘block’ coordinates uL, in Ising systems of 
various space dimensions. A block coordinate uL, gives a linear measure of the 
instantaneous aggregate of the local coordinates lying within a sampling volume of 
linear dimension L,. For block sizes L ,  small compared with 5 but large compared 
with all microscopic length scales, the block PDF is believed to assume a limiting form 
P* which is universal when expressed on the scale set by its standard deviation 
(Patashinskii 1968, Bruce 1981b). The form of the function appears to depend only 
weakly upon the shape of the sampling volume, but strongly upon the space dimension. 
The nature of the function for ‘low’ values of E = d - 1 may be determined by a 
straightforward extension of the arguments developed above. Specifically, we observe 
that the characteristic function associated with a block coordinate uL,, 

(7.25) 

will satisfy a differential equation whose form is identical to that obeyed by the 
characteristic function associated with a droplet coordinate dRS (equation (7.6)), with 
the substitution R,+ L,. The boundary conditions for the differential equation are, 
however, different from those appropriate for (7.6) and, indeed, are less immediately 
prescribed by the rules of our generating procedure. For the present purpose, however, 
the following argument will suffice. A sampling volume defined by a sphere of radius 
L,, embedded in an Ising system which contains only droplets of scale sizes larger 
than L,, will predominantly be entirely within a single phase region, since (cf the 
arguments developed in 9 5.4 to justify our generating procedure) the probability of 
overlap with the surfaces of larger droplets is O(40). Accordingly we may impose on 
the characteristic function (7.25) the boundary condition 

(7.26) 

with an error (in the cumulants of the boundary form of the PDF) that is O(bo), We 
note that the boundary condition presupposes that f >> L ,  so that the sampling volume 
is equally likely to be embedded in either of the two phases. Within the approximation 
implicit in (7.261, one then finds that the block coordinate PDF (in the regime 
5 >> L ,  >>Lo) is simply a symmetrised version of the droplet coordinate PDF ( 7 . 2 4 ~ )  

p*W; L,, LO,  5 )  = (exp(iHuLuL,)), 

1 IH B ( H ;  L,, L,, 6) = ?(e + e-iH) 

(7.27a) 

= ( L , / L ~ ) * * ~ U ~ , .  (7.276) 
In view of the approximation inherent in the boundary condition (7.26) this calculation 
is not systematically correct to O(G0). Nevertheless, the general structure of the 
function P* implied by this calculation for d = 2, bo = & (cf figure 4) is in accord with 



1760 A D Bruce and D J Wallace 

B l a c k  coord inate 

Figure 4. Probability density for a block coordinate in the regime 6 >>L, >> LO, as prescribed 
in ( 7 . 2 7 ~ )  with d = 2, Il0 = &. 

independent studies of the PDF in two dimensions, based on Wilson’s approximate 
recursion formula (Bruce 1981b) and on Monte Carlo techniques (Binder 1981): like 
figure 4, both the latter calculations yield a function P* displaying two distinct markedly 
asymmetric peaks. 

Though quantitatively less reliable than the earlier calculations, the present study 
offers two compensations. Firstly, it prescribes an explicit interpolation between the 
double-peaked structure of the function in d = 2 and the double &function form 
appropriate in d = 1; the structure of the former may thus be ascribed to nested 
droplets, just as the structure of the latter is controlled by kinks (Bruce 1981b). 
Secondly, we see that the high degree of short-range order manifest on length scales 
small compared with 6, which is expressed in the narrowness of the two peaks in the 
PDF, is a corollary of the smallness of the exponent /3 characteristic of low dimensions, 
since both the peak width (7.20) and the exponent value (5.18b) are controlled by 
the single fundamental parameter +bo. 

8. Conclusions and prospects 

In this section we attempt to highlight the key insights which emerge from the work 
we have presented, and identify some of the questions which it leaves unresolved. 

Our essential aim has been to extend the theory of the planar interface initiated 
by Wallace and Zia (1979) to yield a theory of phase transitions in low-dimensional 
king systems. The theory we have developed is not the first of this kind. Its most 
noteworthy predecessor is the bond-shifting form of the renormalisation group, 
introduced by Kadanoff (1976b) which, like our own, is legitimised by a small E = d - 1 
approximation. The work presented here complements its predecessors in a number 
of important respects of which the most significant is the explicit way in which it 
illuminates the nature of the dominant configurations and reveals their signatures in 
critical-point observables. The three key insights relevant in this regard may be 
summarised in the following way. 
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Firstly, we have established that the coarse-grained configurations of a low- 
dimensional Ising system are those of an assembly of droplets, whose boundaries 
remain dilute, for small enough E ,  even in the critical region. 

Secondly, we have seen that, in the limit in which the droplet scale size R is small 
compared with 6, droplet-surface fluctuations result in a droplet surface area which 
has a fractal character (Mandelbrot 1977), as appreciated by David (1981). The fractal 
dimension, d,, of the surface is linked to the correlation length exponent v (cf (4.17)): 

a(R,Lo,6)-Rd", d ,  = l / v .  @. la ,  6 )  

Thirdly, we have established that, as a result of droplet-nesting, the dressed droplet 
volume also has a fractal character, in the limit R << 5. The fractal dimension of the 
droplet volume is linked to the order parameter exponent /3 (cf (5 .25)):  

V ( R ,  Lo, 5 )  - R dv,  d v  = d - p / 2 ~ .  (8.2a, b )  

Returning to the first of these points, we re-emphasise that it is the diluteness of 
the droplet boundaries, guaranteed by small values of the concentration parameter 
&,, that seems to us to be the distinctive simplifying feature of low-dimensional 
configurations. We have already noted (and show more explicitly in appendix 2 )  that 
this feature may be regarded as a natural corollary of the diluteness of cluster walls 
(kinks) in one dimension. We have seen that it legitimises an explicit and tractable 
realisation of the nested droplet picture, which in turn suggests the existence of crucial 
flaws in related phenomenologies (cf (6.3a, b ) ) .  

Turning now to the remaining two points made above we note that, although the 
use of the term 'fractal' in the Ising-model droplet literature has been sparse, the 
appreciation of the essential content of (8.1) and (8.2),  at a qualitative level at least, 
certainly predates the coining of the term. The earliest droplet theories (Fisher 1967) 
allow for the possibility that a cluster (of reversed spins, or of molecules in the 
liquid-gas context) might have a surface area, a, scaling with its volume V, 

a - vu. (8.3) 
in a non-Euclidean fashion (i.e. U, f 1 - l/d). The idea of a 'fractal' droplet volume 
is also clearly implicit in the later variants of the droplet picture (Stauffer et a1 1971, 
Kadanoff 1976a) which recognise the essential role of droplet nesting. 

These ideas have figured rather more explicitly, however, in the closely related 
context of the percolation problem, where a number of differently defined fractal 
dimensions have been introduced to characterise clusters near the percolation thres- 
hold. The profusion of dimensionality assignments has been surveyed by Stauffer 
(1979); we will limit our remarks to a comparison of the prediction (8.2) with the 
assignment of the percolation cluster fractal dimension favoured by a majority of 
authors. Specifically, if one defines such a dimension dV,, by requiring that the mean 
fraction of space occupied by (mean fraction of sites belonging to) the infinite cluster, 
for p apt, in a region of linear dimension R << 6, should scale as RdV,u one finds 
immediately that dV,p is related to the percolation exponents p, and v p  by 

dv,,  = d - P p / v p .  (8.4) 
Since the 'infinite cluster' in the percolation problem is analogous to the dressed 
volume of a single large droplet, one might expect a closer correspondence between 
the fractal dimensions d v  and dV,p than is suggested by (8.26) and (8.4). In fact, the 
significance of the difference between the two forms is less than meets the eye since 
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the exponents p and p p  play different roles in the two problems. In the percolation 
problem the order parameter exponent (p,) is defined such that the mean fraction of 
space occupied by (number of sites belonging to) the percolating cluster vanishes as 
( - ’ ~ ’ ” u .  In the Ising problem, on the other hand, the order parameter exponent ( p )  
is defined such that the difference between the fraction of space occupied by one 
phase and the fraction ocupied by the other vanishes as (-’”’. If, however, in the 
spirit of the percolation problem, one defines an Ising model order parameter exponent 
p’  such that the mean fraction of space occupied by the ‘infinite dressed droplet’ 
(which forms the background sea of the dominant phase) vanishes as (-*”’, one finds 
that 

P ’  = PI2  ( 8 . 5 ~ )  

so that the fractal dimension (8.26) may equally well be written as 

While the formal correspondence of (8.4) and (8.56) may seem reassuring, it is largely 
empty: each relationship is little more (given a scaling theory, no more) than a definition 
of the corresponding order parameter exponent. On the other hand, ( 8 . 5 ~ )  (which 
may be viewed as a corollary of (6.116)) does have some non-trivial content: the 
dressed volume of a droplet, and the difference between the total volumes occupied 
by the two phases of which it consists, scale with exponents which differ by a factor 
of 2. Indeed, Monte Carlo studies of the infinite cluster in the ordered phase of a 
d = 2 nearest-neighbour Ising model suggest critical behaviour consistent with ( 8 . 5 ~ )  
(Jan et a1 1982). 

While the geometrical interpretation of the two principal critical exponents P and 
v afforded by (8.1) and (8.2) is certainly appealing, it clearly can hold only in a limited 
range of space dimensions. In particular, the constraint da a d  - 1 is not fulfilled in 
d = 3, and is fulfilled only as an equality in d = 2 if one makes the assignment ( 8 . l b ) .  
Indeed, it is not hard to identify the possible sources of these limitations. 

We observe, firstly, that, although the arguments which lead through (4.17) to the 
result (8.1) can formally be extended order by order in E ,  since these arguments ignore 
the renormalising effects of other droplets it is not at all clear how they can be justified 
except in the dilute regime guaranteed by the smallness of 4o at low d - 1. In particular 
one might expect that, in addition to its intrinsic structure (generated by surface 
fluctuations), a droplet surface will be embellished with further detail associated with 
other droplets, with which it has a partial overlap. Equation (8.16) should thus be 
written as 

( 8 . 6 ~ )  da = l / v  + o(40) 

where we may expect the O(Jlo) corrections to be positive. 
Secondly, as regards the limitations of (8.26) we remark that our neglect of the 

renormalising effects of surface fluctuations (implicit in the spherical approximation 
for the bare droplet volume) seems not to be a problem since these fluctuations do 
not appear to change the volume scaling dimension (cf (4.7)). Thus the only approxima- 
tion inherent in (8.26) is again the presupposition of dilute boundaries so that, more 
precisely, we assert 

d v  = d - (p /2v ) ( l+  O(4o)). (8.66) 
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To the extent that the properties of droplets are reflected in the behaviour of lattice 
Ising model clusters (cf the extensive discussion in § 6), the two predictions ( 8 . 6 ~ )  
and (8.66) are susceptible to test by Monte Carlo simulations-most immediately 
through their implication for the surface exponent U, defined in (8.3). Recalling ( 8 . 1 ~ )  
and ( 8 . 2 ~ )  we see that 

where, strictly, the p term should be discarded since it is of the same order as the 
neglected terms O($& Equation (8.7) yields U, = 8 for d = 2. This result is actually 
consistent with that reported by Binder and Stauffer (1972) whose Monte Carlo studies 
indicated a value of ( T ~  close to t .  However, the latter study was restricted to 
temperatures T s 0.9Tc and its relevance to the 'asymptotic' regime must be viewed 
with reserve. Indeed, a later Monte Carlo study (Domb er al 1975) probing a region 
closer to criticality (T  = 0.96Tc) reported a value of (T = 0.75 f 0.05. However, in this 
case it appears that the surface area of a cluster was taken to include that associated 
with internal boundaries. The different scaling properties of this total surface area A 
are actually implicit in (4.17) and (5.28) which show that (again for R << 5) 

The correspondence between (8.66) and (8.86) then implies that 

in accord with a suggestion by Stauffer (1975). That the value of U reported by Domb 
et ul (1975) is larger than that recorded by Binder and Stauffer (1972) is thus 
intelligible. That the value falls short of the prediction (8.9) is presumably a reflection 
of the fact that the latter can be expected to hold only in the regime of small enough 
reduced temperatures and large enough cluster sizes that the contributions of internal 
surfaces are dominant. Indeed, Domb et a1 (1975) themselves observe that their U 
assignment should be regarded as an effective rather than asymptotic exponent value, 
and record a trend towards larger (T values for larger cluster sizes. Clearly, further 
Monte Carlo studies are now in order to check the extent to which the characteristics 
of droplets implied by results such as (6.116) and (8.7) are borne out in the properties 
of lattice Ising model clusters in two dimensions. 

This brings us, appropriately, to the point where we must identify some of the 
issues which this work has left unresolved, and consider the prospects for further study. 

Firstly, it will certainly be of some interest to establish the extent to which the 
calculations reported here can be extended to higher order. It would appear that the 
prospects for the refinement of the two parts, into which this work falls naturally, are 
rather different. It seems clear that the theory of the nearly spherical isolated droplet 
can be extended systematically, just as in the case of the nearly planar isolated interface 
(Wallace and Zia 1979, Forster and Gabriunas 1981). It is less clear that our 
multi-droplet theory can be extended in any systematic fashion to include the effects 
of the intersection of droplet boundaries. This limitation is possibly more serious than 
it might seem since, as remarked earlier, it is far from clear that calculations of 
'isolated' droplet properties-specifically, the determination of the exponent v from 
single-droplet-surface characteristics-can be trusted outside the dilute regime. We 
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expect that the situation will be similar to that in one dimension, where (Zinn-Justin 
1981) the value of asymptotic series must be defined before exponentially small effects 
become significant except for physical quantities which have zero asymptotic 
expansion. Thus we anticipate that the class of exponents (v, a) will also acquire 
exponentially small contributions from droplet interactions (overlap) whose value can 
be given only when the sum of the asymptotic series in F is defined. The leading 
exponentially small effects in the class p, 7 .  . . are significant because these exponents 
have zero asymptotic expansion. In fact, the existence of effects of this kind seems 
an inescapable corollary of the fact that the isolated droplet theory predicts an exponent 
Y for the q-state Potts model that is independent of q (Schmittmann 1982). However, 
an explicit resolution of this issue seems likely to prove difficult, requiring, as it will, 
a greater degree of unification of the two portions of this work than we have achieved 
here. 

In this context we should now recall that while a form of lattice spacing (minimum 
droplet size) appears naturally in our theory of multi-droplet configurations, our 
single-droplet theory, being dimensionally regularised, lacks this reassuring feature. 
A reworking of the latter calculation on a lattice might be informative, but would be 
complicated by the fact that an explicit lattice cut-off breaks important symmetries 
of the Hamiltonian (2.11). 

There are, however, other extensions of our theory which may prove more tractable, 
and are certainly of interest. 

First, it is clearly desirable to establish the extent to which the theory of coexistence 
curve (H = 0, T < T,) behaviour presented here can be extended to other regions of 
the H-T plane. In the region T < T,, H # 0 we foresee no difficulties of principle: a 
theory of this regime will allow one to unify the treatment of the critical region given 
here with the theory of the first-order transition on the subcritical portion of the 
coexistence curve developed elsewhere. The regime T > T,, however, is more prob- 
lematic. Below the critical temperature the effects of droplets of all scale sizes are 
controlled by virtue of the fact that T ( R )  is bounded between the low-temperature 
and critical fixed points, 0 and T, = O ( E ) .  Above the critical temperature, T ( R )  is 
not bounded for large R and it is not clear to us how one may characterise the effects 
of large droplets. 

Secondly, it seems likely that the arguments presented here may also be extended 
to embrace the percolation problem. Indeed, Gefen et a1 (1981) have recently 
proposed a scheme for generating a fractal representation of the backbone of the 
percolating cluster, which (scheme) shares with our droplet generating scheme the 
flavour of a RG transformation run in a reverse mode. Furthermore, Schmittmann 
(1982) has already considered the generalisations of our arguments necessary to 
describe the q-state Potts model, whose q = 1 limit is now well known to generate the 
physics of the percolation problem (see e.g. Stauffer 1979). 

Thirdly, we have some hopes that the present theory may be extended to yield a 
more explicit theory of correlations than we have developed here. In particular, it 
remains to be demonstrated that at large distances the correlation function does indeed 
have the anticipated exponential decay over a length which (for suitable choice of the 
amplitude C O )  coincides with the ‘correlation length’ 5 prescribed in (3.28bL 

Finally, with the encouragement of a recent study of time-dependent properties 
of the isolated planar interface (Bausch et a1 1981) we may also view optimistically 
the prospects for a dynamical droplet theory with which one may explore the strongly 
nonlinear dynamics of low-dimensional Ising systems. 
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Appendix 1. Functional measure of the single droplet partition function 

The calculation of the single-droplet partition function 2, in $ 3  is tied to the use of 
dimensional regularisation in two important aspects. 

First, since the expression (2.12) for Z1 involves the absolute value of a single 
functional integral, the result apparently depends on the convention chosen for the 
scale of the field f ( q )  or its spherical harmonic amplitudes ala. In particular, if we 
had chosen a measure nl,,([dal,) in (3.5) where [ in some arbitrary constant, the 
value obtained for Z1 would change by a factor [’ where y = Xi v l ( d ) .  However, for 
all values of d for which this sum converges one can show from (2.9) that its value 
is zero. Hence in dimensional regularisation y = 0 and the result is independent of 
the scale of f ( q )  in the measure. 

Second, it is implicit in the calculation in 8 3 that the measure Df is invariant 
under the transformation (2.8) on the field f, corresponding to a rigid translation of 
the droplet. In general, one might expect that a non-trivial Jacobian factor would be 
needed to achieve this invariance. If we write the infinitesimal translation (2.8) in the 
form f ’  = f + F ( f ) ,  the condition D f J ( f )  = D(f‘)J(f’)  for an invariant measure becomes 
J ( f )  = det((Sf’/Sf)JCf‘). Expanding this equation for infinitesimal F yields 

From (2.8), for translation by infinitesimal amount x ,  

and hence 

~ F V ( T ) ) / ~ ~ ( T ’ ) )  =xiqJzjKR + ~ ( ~ J ) I - ~ s ( T  -T’)I* 
Upon integration by parts the reader may then check that the functional 

d - 1  J = C exp -S(O) 1 dR ln(R + f )  
d 

is formally a solution of (Al . l ) ,  where C is an arbitrary constant. Thus indeed a 
Jacobian factor is required to ensure an invariant measure DfJCf). However, this 
Jacobian factor contains S(0) which is identically zero in the framework of dimensional 
regularisation so that in that scheme J can be taken as a constant. 

In the calculation of $ 3,  however, we explicitly assumed that the constant C was 
1. In large measure this assumption was initially based on intuitive notions of what 
the sum over all surfaces means in e.g. lattice models. At this point this is a very 
unsatisfactory state of affairs because although the functional form of Z1 would be 
independent of C its universal amplitude and hence the exponent p would depend 
on C. 
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In order to place the result (3.30) for Z1 on a sounder footing, we consider the 
calculation in the framework of the Landau-Ginzburg model of a one-component 
field 4 ( x ) :  

ddx[$(V4)’ + V(4)]  (A1.2) 

where some cut-off representing a lattice or mean molecular spacing is to be under- 
stood. Since we are concerned here with describing two competing phases below a 
critical temperature, V(4 )  should have two competing minima at 4+ and 4-  say, 
associated with the two possible phases. We can attempt to make the droplet configur- 
ations in (A1.2) explicit by writing the formal expansion for the partition function 

m 
(A1.3) 

where 

(A1.4a) 

(A1.46) 

and the label n indicates that the associated functional integral extends over all 
configurations containing n droplets. For a general potential V(4 )  (with two compet- 
ing minima at 4+) there is of course considerable ambiguity in the decomposition 
(A1.3). For example, when does a ‘fluctuation’ from a homogeneous phase qualify 
as a ‘droplet’? This ambiguity is removed in the ‘deep well’ or ‘thin wall’ limit. In 
this limit the potential V(4 )  generates a &function (Ising-like) distribution for 4 ;  in 
the simple case where 

(A1.5) 

this corresponds to p -+ 00, g + CO with g / p 2  fixed. Then the only feature left is the 
statistical mechanics of the sharp interfaces separating regions with 4+ and 4L 

In principle, all the calculations of this paper could be carried out within the 
framework of this model, with the parameter p acting as a regulator for the short- 
distance fluctuations in the surfaces. We would expect that for an arbitrary potential 
V ( 4 )  (with external fleld H = 0) the one-droplet partition function Z1 in (A1.46) 
would in the limit + 00 give the universal result (3.30). The technicalities in perform- 
ing such a calculation for Z1 are substantial (see e.g. Gervais and Neveu (1976)) and 
we have not attempted to do so. 

However, to provide some justification for this claimed universality, we have 
followed Langer (1967) and set up a calculation of the imaginary part of Z1 obtained 
from (A1.46) in the metastable region, in ( l + e )  dimensions. The heart of this 
calculation involves expanding the-field 4 in the numerator jI D4 about the critical 
droplet solution 4c and in the denominator lo D4 about the metastable homogeneous 
extremum do of H. Neglecting anharmonic terms in the expansions, one has formally 

21 = exp - [ H ( 4 , )  -H(40)1 Det-”2[(-V2 + Vf’(4c))/(-V2 + V”(40))l (A1.6) 

The exponential factor contains the classical droplet energy and the ratio of deter- 
minants contains the one-loop corrections. For the droplet theory in this paper to be 

1 2 2  V(4 )=-2p  4 +&P4-H4 
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physically sensible, (A1.6) must yield a universal expression equivalent to (3.30) in 
the deep well limit of any potential V. This limit has been considered in some detail 
by Affleck (1979). Noting that in this limit the solution 4 for a droplet of radius R, 
approaches a step function 

4, = 4- + (4 - - 4 - ) e ( r  -U 
we have calculated the ratio of determinants for the special case 

~ ” ( 4 , )  = p 2 + (p  ? - p ! ) e  ( r  - R,) + AS ( r  - R,), 
V”(40) = p + 

(A1.7a) 

(A1.76) 

Here the curvatures (mass terms) in the stable and metastable wells of V at 4- and 
4+ are denoted by p! and p : ;  they are taken to infinity in the deep well limit. The 
S-function potential has a coefficient A whose value is given in terms of p: and p -  
by the constraint that the translation mode a&, must be an exact I = 1 eigenfunction 
of -V + V”(4,) with eigenvalue zero. 

We have calculated (A1.6) for the special case (A1.7) in the limit p+,  p - +  a, with 
A fixed by the above constraint. The resulting expression could in principle depend 
on A ; we find that the imaginary part of 2 1  is independent of A and has the same 
value as would be obtained from the claimed result (3.20) by analytic continuation 
into the metastable region. Thus, within the class of potentials (A1.7), we substantiate 
the normalisation for the functional integral (2.12). The extension of the argument 
to a general potential V ( 4 )  is conceivable but has not been attempted here. 

2 

2 

Appendix 2. The one-dimensional limit 

In this appendix we consider the special limiting case of one dimension. Our aim is 
to show that the surface fluctuation model developed in this paper reproduces, in this 
limit, the results predicted by the domain wall phenomenologies known to capture 
the basic physics of the Ising universality class in d = 1 (Krumhansl and Schrieffer 
1975, Aubry 1975, Currie er a1 1980). 

Consider first of all the correlation length 5. Inserting into (3.27) the E = 0 form 
of the p function (3.26a), one finds as the d = 1 analogue of (3.286) 

5 = c ~ L ~ ( T ( L ~ ) ) ~ ’ ~  e x p [ l / ~ ( ~ o ) ~ .  (A2.1) 

The exponential term in this expression reflects the influence of the classical droplet 
surface energy, and is controlled by the coefficient of the O ( E )  contribution to v-’ 
(equation (3 .28~) ) .  The prefactor originates in the effects of droplet surface fluctu- 
ations, and is controlled by the coefficient of the O ( e 2 )  contribution to v-’. The 
amplitude c1 is a constant which sets the overall length scale and, like the constant 
co in (3.28a) (to which it is related by a factor which is a singular function of e ) ,  is 
not prescribed by our theory. 

Remarkably, the form of (A2.1) is in precise accord with the results of studies of 
d4 and related models in one dimension (Currie et a1 1980), which yield the same 
functional dependence of the correlation length 5 upon the temperature T (expressed 
in units of the domain wall energy) as is prescribed by (A2.1), modulo system-specific 
(non-universal) prefactors playing the role of our own unspecified amplitude c1. One 
cautionary comment is, however, in order here. The temperature-dependent (TI”) 
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prefactor predicted in (A2.1) is not a universal feature of the d = 1 king universality 
class: although it appears in the correlation length for Ising systems in the continuum 
limit in which the kink width is large compared with the lattice spacing, it is not 
present in the fixed length spin Ising limit. We do not fully understand why the d = 1 
limit of our theory realises the former situation rather than the latter. 

Now let us examine the d = 1 limit of the function 4(R,  5). Substituting into (4.3) 
the solution for T ( R )  found by integrating the d = 1 form of the @-function equation 
(3.26a), we find 

$iR, 0 = ~ ~ ( R I L ; ) ( T ( L O ) ) - ~  ex~[-2/T(Lo)I[l+ O(T(R))I (A2.2) 

where c2 is a dimensionless non-universal constant, prescribed by the renormalisation 
scheme. Now, according to the arguments advanced in 0 5.1, equation (A2.2) (more 
precisely, $ ( R , t ) d R )  should give the mean fraction of space occupied by ‘one- 
dimensional’ droplets of scale size R + R +dR. A one-dimensional droplet of scale 
size R is simply a kink-antikink pair, separated by an interval R which contains no 
other domain walls. Recalling that the probability per unit length of finding a domain 
wall is 1/25, one sees that the probability of finding a droplet of scale size R -* R +dR 
is dR/4t2,  per unit length, provided that R < < 5  so that the constraint that there be 
no intervening domain walls can be neglected. The mean number of such droplets in 
length L is then L dR/4t2,  and the mean fraction of space which they occupy will 
thus be (R/L)(L dR/4t2).  We conclude that 

$(R, 5) = R/4 t2 ,  R << 5. (A2.3) 

Recalling (A2.1), it is clear that the surface fluctuation model prediction (A2.2) is 
consistent with the prediction of the domain wall theory (A2.3), and that the two 
results may be brought into full accord by assigning an appropriate value to the 
unknown amplitude c 1 .  The failure of (A2.3) for R 3 5  is also implicitly corroborated 
by (A2.2). In the region above the critical point (the region to which we have 
‘continued’ our theory in the course of this section-necessarily so, since t ,  = 0 in 
d = 1) the coupling constant T(R),  and thus the O(T(R)) ‘corrections’ to (A2.2), are 
unboundedly large for large R (cf 8 8). 
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